Complete Question:
Gauss's law:
Group of answer choices
A. can always be used to calculate the electric field.
B. relates the electric field throughout space to the charges distributed through that space.
C. only applies to point charges.
D. relates the electric field at points on a closed surface to the net charge enclosed by that surface.
E. relates the surface charge density to the electric field.
Answer:
D. relates the electric field at points on a closed surface to the net charge enclosed by that surface.
Explanation:
Gauss's law states that the total (net) flux of an electric field at points on a closed surface is directly proportional to the electric charge enclosed by that surface.
This ultimately implies that, Gauss's law relates the electric field at points on a closed surface to the net charge enclosed by that surface.
This electromagnetism law was formulated in 1835 by famous scientists known as Carl Friedrich Gauss.
Mathematically, Gauss's law is given by this formula;
ϕ = (Q/ϵ0)
Where;
ϕ is the electric flux.
Q represents the total charge in an enclosed surface.
ε0 is the electric constant.
Answer:
13.7m
Explanation:
Since there's no external force acting on the astronaut or the satellite, the momentum must be conserved before and after the push. Since both are at rest before, momentum is 0.
After the push

Where
is the mass of the astronaut,
is the mass of the satellite,
is the speed of the satellite. We can calculate the speed
of the astronaut:

So the astronaut has a opposite direction with the satellite motion, which is further away from the shuttle. Since it takes 7.5 s for the astronaut to make contact with the shuttle, the distance would be
d = vt = 1.83 * 7.5 = 13.7 m
<h3><u>Answer;</u></h3>
D) Standing wave
<h3><u>Explanation;</u></h3>
- Standing wave also called stationary wave is a wave which oscillates in time but whose peak amplitude profile does not move in space.
- A standing wave pattern is a vibrational pattern created within a medium when the vibrational frequency of the source causes reflected waves from one end of the medium to interfere with incident waves from the source.
- Examples of standing waves include the vibration of a violin string and electron orbitals in an atom.
Answer:
because it is a worldwide system....
Explanation: