Answer:
t = 4 s
Explanation:
As we know that the particle A starts from Rest with constant acceleration
So the distance moved by the particle in given time "t"



Now we know that B moves with constant speed so in the same time B will move to another distance

now we know that B is already 349 cm down the track
so if A and B will meet after time "t"
then in that case


on solving above kinematics equation we have

Let's start with the concept of momentum. What is it? Linear momentum in physics is mathematically written as a product of mass and velocity of an object. Now let us suppose a body of mass m is moving in an inertial frame of reference with velocity v. Consider the fact that no external force is acting on the system. The momentum of this body is given by mv, where m is the mass and v is its velocity. In case of simple real world problems not delving into the realms of relativity, mass is a conserved quantity and it cannot be zero. Hence the velocity of the body must be zero and hence the momentum.
However, photons are considered to have a rest mass zero.
However note the point carefully "rest mass". A body in motion cannot have mass to be zero.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em><em> ❤️</em>
A because it’s basic kinetic example