Amount of work done is zero and so power = 0 watts.
<u>Explanation:</u>
Power is the rate at which work is done, or W divided by delta t. Since the barbell is not moving, the weightlifter is not doing work on the barbell.Therefore, if the work done is zero, then the power is also zero.It may seem unusual that the data given in question is versatile i.e. A weightlifter exerts an upward force on a 1000-N barbell and holds it at a height of 1 meter for 2 seconds. But, still the answer is zero watts , this was a tricky question although conceptual basis of question was good! Power is dependent on amount of work done which is further related to displacement and here the net displacement is zero ! Hence, amount of work done is zero and so power = 0 watts.
Answer: 
Explanation:
Given
mass of ball m=10 kg
It is placed at a height of 150 m
It is dropped from the height and allowed to free fall for 40 m
Velocity acquired by the ball during this fall is given by 
Insert u=0, a=g

Kinetic energy at this instant

4. E
5. D
6. F
Hope this helps
Answer:
The magnitude of the gravitational force is 4.53 * 10 ^-7 N
Explanation:
Given that the magnitude of the gravitational force is F = GMm/r²
mass M = 850 kg
mass m = 2.0 kg
distance d = 1.0 m , r = 0.5 m
F = GMm/r²
Gravitational Constant G = 6.67 × 10^-11 Newtons kg-2 m2.
F = (6.67 × 10^-11 * 850 * 2)/0.5²
F = 0.00000045356 N
F = 4.53 * 10 ^-7 N
A 14 pin dual-in-line IC package[14 DIL] is an integrated socket which is most popular form of IC package and has a wide range of application in digital electronics.
The 14-pin DIL has two pairs per side and each pair contains seven connecting pins.
The pairs of pins are arranged linearly one after another.The typical dimensions of width is 6.5 mm and the typical dimension of length is 18 mm.
we are asked to calculate the typical distance between two adjacent pins.
The typical distance between two adjacent pins is calculated as-


[ans]