Answer:
a) A = 4.0 m
, b) w = 3.0 rad / s
, c) f = 0.477 Hz
, d) T = 20.94 s
Explanation:
The equation that describes the oscillatory motion is
x = A cos (wt + fi)
In the exercise we are told that the expression is
x = 4.0 cos (3.0 t + 0.10)
let's answer the different questions
a) the amplitude is
A = 4.0 m
b) the frequency or angular velocity
w = 3.0 rad / s
c) angular velocity and frequency are related
w = 2π f
f = w / 2π
f = 3 / 2π
f = 0.477 Hz
d) the period
frequency and period are related
T = 1 / f
T = 1 / 0.477
T = 20.94 s
e) the phase constant
Ф = 0.10 rad
f) velocity is defined by
v = dx / dt
v = - A w sin (wt + Ф)
speed is maximum when sine is + -1
v = A w
v = 4 3
v = 12 m / s
g) the angular velocity is
w² = k / m
k = m w²
k = 1.2 3²
k = 10.8 N / m
h) the total energy of the oscillator is
Em = ½ k A²
Em = ½ 10.8 4²
Em = 43.2 J
i) the potential energy is
Ke = ½ k x²
for t = 0 x = 4 cos (0 + 0.1)
x = 3.98 m
j) kinetic energy
K = ½ m v²
for t = 00.1
²
v = A w sin 0.10
v = 4 3 sin 0.10
v = 1.98 m / s
Answer:
Force is 432.94 N along the rebound direction of ball.
Explanation:
Force is rate of change of momentum.

Final momentum = 0.38 x -1.70 = -0.646 kgm/s
Initial momentum = 0.38 x 2.20 = 0.836 kgm/s
Change in momentum = -0.646 - 0.836 = -1.472 kgm/s
Time = 3.40 x 10⁻³ s

Force is 432.94 N along the rebound direction of ball.
Answer:
(a) T = 2987.6 k
(b) T = 19986.2 k
Explanation:
The temperature of a star in terms of peak wavelength can be given by Wein's Displacement Law, which is as follows:

where,
T = Radiated surface temperature
= peak wavelength
(a)
here,
= 970 nm = 9.7 x 10⁻⁷ m
Therefore,

<u>T = 2987.6 k</u>
(b)
here,
= 145 nm = 1.45 x 10⁻⁷ m
Therefore,

<u>T = 19986.2 k</u>
Answer:
Magnification will be equal to 3
Explanation:
We have given focal length of the converging lens 
Focal length of the diverging lens 
Object is placed 40 cm to the length of the converging lens d = 40 cm
Combination of the focal length will be equal to


F = 60 cm
So combination of the focal length will be 60 cm
Magnification is given by

So magnification will be equal to 3
Another (slightly more technical) name for kidney stones is "renal calculus".
I know this because we have met many times, and we are old friends.