Larger gases produces more spectral lines than the smaller gases because they have more orbitals in their atoms.
Hydrogen has only one orbital in which an electron orbits. At the excited state, that is, when the electron gains energy, the number of energy level it can transcend is very few. For larger elements, they have more orbitals and when excited, they can move from the ground state to other energy levels at which they produce various unique spectral lines.
Answer:
6.43 moles of NF₃.
Explanation:
The balanced equation for the reaction is given below:
N₂ + 3F₂ —> 2NF₃
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Finally, we shall determine the number of mole of nitrogen trifluoride (NF₃) produced by the reaction of 9.65 moles of Fluorine gas (F₂). This can be obtained as follow:
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Therefore, 9.65 moles of F₂ will react to to produce = (9.65 × 2)/3 = 6.43 moles of NF₃.
Thus, 6.43 moles of NF₃ were obtained from the reaction.
Answer:
0.00370 g
Explanation:
From the given information:
To determine the amount of acid remaining using the formula:
where;
v_1 = volume of organic solvent = 20-mL
n = numbers of extractions = 4
v_2 = actual volume of water = 100-mL
k_d = distribution coefficient = 10
∴




Thus, the final amount of acid left in the water = 0.012345 * 0.30
= 0.00370 g
Answer:
The required volume is 1.6 x 10³mL.
Explanation:
When we want to prepare a dilute solution from a concentrated one, we can use the dilution rule to find out the required volume to dilute. This rule states:
C₁ . V₁ = C₂ . V₂
where,
C₁ and V₁ are the concentration and volume of the concentrated solution
C₂ and V₂ are the concentration and volume of the dilute solution
In this case, we want to find out V₁:
C₁ . V₁ = C₂ . V₂

Water would not expand when it freezes.<span> </span>