Answer:
C.Melt both cubes and look for a broader range of melting temperatures. The one that melts over a broader range of temperatures is the amorphous solid.
Explanation:
Amorphous solids is one that do not have a fixed melting points but melt over a wide range of temperature due to the irregular shape hence its name. Contrariwise crystalline solids, have a fixed and sharp melting point.
This comes in handy to solve the riddle. We can characterise the pair with the melting point property.
Answer:
i believe lithium dont clown me if im wrong
Explanation:
Since
potassium and phosphate is what we are to find for and they are both found in
the potassium phosphate solution, therefore we solve for this one first on the
basis of the phosphate.
The formula
for finding the volume given the concentration and number of moles is:
Volume =
number of moles / concentration in Molarity
Volume
potassium phosphate required = 30 mmol phosphate / (3 mmol / mL)
<u>Volume
potassium phosphate required = 10 mL</u>
This would
also contain potassium in amounts of:
Amount of
potassium in potassium phosphate = 10 mL (4.4 meg / mL)
Amount of
potassium in potassium phosphate = 44 meg
Therefore
the potassium chloride required is:
Volume of
potassium chloride = (80 meg – 44 meg) / (2 meg / mL)
<span><u>Volume of
potassium chloride = 72 mL</u></span>
Answer:
because the amount of pigments change as thee leaves prepare to fall from the trees
Hello!
If a reaction occurs when a piece of metal is placed in a solution, you can conclude that the solution is <span>probably acidic because bases rarely react with metals.
Strong Acids, like HCl, react with metals to produce salts and release gaseous hydrogen (H</span>₂) which is evidenced by the generation of bubbles in the solution. The general chemical equation for this kind of reactions for a metal M and an acid HA is:
2M(s) + 2HA(aq) → 2MA(aq) + H₂(g)
Have a nice day!
<span>
</span>