Centripetal force is given by F= mv²/r.
Given: m = 0.5 kg, v = 3 m/s, r = 0.5 m
Putting values,
F= mv²/r = 0.5× 3²/0.5 = 9 N
Answer:
the no. of ejected electrons per second will increase.
Explanation:
In photoelectric effect, when a light is incident on a metal surface it ejects some electrons from the metal surface. The energy of photon of light must be equal to or greater than the work function of that metal. All the extra energy above the work potential appears as the kinetic energy of the ejected electrons. So, greater he energy of photon greater will be the kinetic energy of the ejected electrons.
A single photon interacts with a single electron and ejects it only if its energy is greater than work function. So, the increase in no. of photons per second means an increase in the intensity of laser beam. And greater no. of photons, will interact with greater no. of electrons. So, <u>the no. of ejected electrons per second will increase.</u>
<span>The first stage in the Gas model of stress is alarm and
mobilization. So the correct option in regards to the given question is option “d”.
Hans Selye is the person that evolved this model and he has explained this
model in complete details. He has broken
down his model into three stages. The first stage involves alarm and
mobilization. The second stage includes resistance. The third and the final
stage include the exhaustion stage. These are the stages that an organism goes
through to restore back the balance when stress is exerted from outside. </span>
Answer:four times
Explanation:
Given
mass of both cars A and B are same suppose m
but velocity of car B is same as of car A
Suppose velocity of car A is u
Velocity of car B is 2 u
A constant force is applied on both the cars such that they come to rest by travelling certain distance
using to find the distance traveled
where, v=final velocity
u=initial velocity
a=acceleration(offered by force)
s=displacement
final velocity is zero
For car A


For car B


divide 1 and 2 we get

thus 
distance traveled by car B is four time of car A