When the body is at rest, its speed is zero, and the graph lies on the x-axis.
When the body is in uniform motion, the speed is constant, and the graph is a horizontal line, parallel to the x-axis and some distance above it.
It's impossible to tell, based on the given information, how these two parts of the
graph are connected. There must be some sloping (accelerated) portion of the graph
that joins the two sections, but it cannot be accounted for in either the statement
that the body is at rest or that it is in uniform motion, since acceleration ... that is,
any change of speed or direction ... is not 'uniform' motion'.
Explanation :
It is given that,
Potential energy, 
Power dissipated, 
We know that the power dissipated is given by :

I is the current passing through the phone.



or
I = 0.018 A
Hence, the current that passes through the phone is (1) 0.018 A.
Answer:
s = 3 m
Explanation:
Let t be the time the accelerating car starts.
Let's assume the vehicles are point masses so that "passing" takes no time.
the position of the constant velocity and accelerating vehicles are
s = vt = 40(t + 2) cm
s = ½at² = ½(20)(t)² cm
they pass when their distance is the same
½(20)(t)² = 40(t + 2)
10t² = 40t + 80
0 = 10t² - 40t - 80
0 = t² - 4t - 8
t = (4±√(4² - 4(1)(-8))) / 2(1)
t = (4± 6.928) / 2 ignore the negative time as it has not occurred yet.
t = 5.464 s
s = 40(5.464 + 2) = 298.564 cm
300 cm when rounded to the single significant digit of the question numerals.
Answer:
10 N
Explanation:
F = ma = m(Δv/t) = 5.0(10.0 - 0)/5.0 = 10 N
Answer:
The magnitude of magnetic field at given point =
×
T
Explanation:
Given :
Current passing through both wires = 5.0 A
Separation between both wires = 8.0 cm
We have to find magnetic field at a point which is 5 cm from any of wires.
From biot savert law,
We know the magnetic field due to long parallel wires.
⇒ 
Where
magnetic field due to long wires,
,
perpendicular distance from wire to given point
From any one wire
5 cm,
3 cm
so we write,
∴ 

![B =\frac{ 4\pi \times10^{-7} \times5}{2\pi } [\frac{1}{0.03} + \frac{1}{0.05} ]](https://tex.z-dn.net/?f=B%20%3D%5Cfrac%7B%204%5Cpi%20%5Ctimes10%5E%7B-7%7D%20%5Ctimes5%7D%7B2%5Cpi%20%7D%20%5B%5Cfrac%7B1%7D%7B0.03%7D%20%2B%20%5Cfrac%7B1%7D%7B0.05%7D%20%5D)

Therefore, the magnitude of magnetic field at given point = 