Answer:
The answer is below
Explanation:
Let vₐ be the speed of airplane = 135 mph, vₙ be the speed of the wind = 70 mph and vₐₙ be the speed of the airplane relative to the wind.
The distance (d) = 135 miles, Δt = 1 hour, vₐₙ = 135 miles / 1 hour = 135 mph
vₐ = vₙ + vₐₙ
vₐ = vₐₙ
Therefore, vₐ, vₐₙ, vₙ can be represented by an isosceles triangle since vₐ = vₐₙ.
The direction of the wind θ is:
sin(θ / 2) = vₙ / 2vₐ
sin(θ / 2) = 70/ (2*135)
sin(θ / 2) = 0.2593
θ / 2 = sin⁻¹(0.2593) = 15
θ = 30⁰
2α = 180° - 30°
2α = 150°
α = 75°
a) The direction of the wind is 75° in the south east direction while the airplane is heading 30° in the north east direction.
Around 70-72% of earth’s surface is covered in water (most of it is salt water).
Hope this helps.
Answer:
the answer is A
when air above the hot sand rises then cool air above the ocean replaces it
Answer:
- Distance is a scalar quantity, defined as the total amount of space covered by an object while moving between the final position and the initial position. Therefore, it depends on the path the object has taken: the distance will be minimum if the object has travelled in a straight line, while it will be larger if the object has taken a non-straight path.
- Displacement is a vector quantity, whose magnitude is equal to the distance (measured in a straight line) between the final position and the initial position of the object. Therefore, the displacement does NOT depend on the path taken, but only on the initial and final point of the motion.
If the object has travelled in a straight path, then the displacement is equal to the distance. In all other cases, the distance is always larger than the displacement.
A particular case is when an object travel in a circular motion. Assuming the object completes one full circle, we have:
- The distance is the circumference of the circle
- The displacement is zero, because the final point corresponds to the initial point