Law of conservation of momentum states that when two objects collide with each other , the sum of their linear momentum always remains same or we can say conserved and is not effected by any action, reaction only in case is no external unbalanced force is applied on the bodies.
Let,
m
A
= Mass of ball A
m
B
= Mass of ball B
u
A
= initial velocity of ball A
u
B
= initial velocity of ball B
v
A
= Velocity after the collision of ball A
v
B
= Velocity after the collision of ball B
F
ab
= Force exerted by A on B
F
ba
= Force exerted by B on A
Now,
Change in the momentum of A= momentum of A after the collision - the momentum of A before the collision
= m
A
v
A
−m
A
u
A
Rate of change of momentum A= Change in momentum of A/ time taken
=
t
m
A
v
A
−m
A
u
A
Force exerted by B on A (F
ba
);
F
ba
=
t
m
A
v
A
−m
A
u
A
........ [i]
In the same way,
Rate of change of momentum of B=
t
m
b
v
B
−m
B
u
B
Force exerted by A on B (F
ab
)=
F
ab
=
t
m
B
v
B
−m
B
u
B
.......... [ii]
Newton's third law of motion states that every action has an equal and opposite reaction, then,
F
a
b=−F
b
a [ ' -- ' sign is used to indicate that 1 object is moving in opposite direction after collision]
Using [i] and [ii] , we have
t
m
B
v
B
−m
B
u
B
=−
t
m
A
v
A
−m
A
u
A
m
B
v
B
−m
B
u
B
=−m
A
v
A
+m
A
u
A
Finally we get,
m
B
v
B
+m
A
v
A
=m
B
u
B
+m
A
u
A
This is the derivation of conservation of linear momentum.
We want to study the impact of a sledgehammer and a wall.
Before the sledgehammer hits the wall, it has a given velocity and a given mass, so it has momentum and it has kinetic energy.
When it hits the wall, the velocity of the hammer disappears, this means that the energy is transferred to the wall, this "transfer of energy" can be thought of a force applied for a really short time on the wall, which for the third law of Newton, the force is also applied on the hammer.
This is why you feel the impact on the handle when you hit something with a hammer, this also means that some of the energy is dissipated on your arms.
Now, because the wall is made of a material usually not as strong as the head of the sledgehammer, we will see that in this interaction the wall seems more affected than the hammer, but the forces that each one experiences are exactly equal in magnitude.
If you want to learn more, you can read:
brainly.com/question/13952508
Answer: the correct answer is (B) He did not know that interstellar dust made it hard from him to see a large part of the Milky Way's disk.
Explanation:
We live in a dusty Galaxy. Because interstellar dust absorbs the light from stars, Herschel could see only those stars within about 6000 light-years of the Sun.
Answer:
P = 147,75 W
Explanation:
A man whose mass is 59.1kg climbs up 30 steps of a stair each step is 25 cm high
Height at 30 steps , h=30×2.5= 7.5 m
Change in potential energy , =mgh=59.1×10×7.5 = 4432.5 J
So, Work done by the man , W= 4432.5J
Power used , P= 
P = 4432.5 /30
P = 147,75 W
Solve any question of Work, Energy and Power with:-
brainly.com/question/3854047
#SPJ1