Answer:
57.885.8 kg weight of the container
Explanation:
The volume of the balloon * density of water = buoyant force of balloon
volume of a sphere = 4/3 pi r^3
= 4/3 pi * (1.5)^3 = 14.14 m^3 <===balloon volume
Now, find the buoyant force on the container ALONE ....
5.8 * 2.6 * 2.8 * 1027 = 43 364 kg <===== buoyant force
Now add the buoyant force of the balloon to find the weight
43 364 + 14.14 * 1027 = 57885.8 kg
The answer is A.
Explanation:
We know that the average acceleration a for an interval of time Δt is expressed as:
a = Δv
Δt
where Δv is the change in velocity that occurs during Δt.
e formula for the instantaneous acceleration a is almost the same, except that we need to indicate that we're interested in knowing what the ratio of Δv to Δt approaches as Δt approaches zero.
We can indicate that by using the limit notation.
So, the formula for the instantaneous acceleration is:
a = lim Δv
Δt→0 Δt
The base unit of time in the metric and SI system is the second.
Answer:
a toy car speed is about 2.5 to 3.5 mph
Answer:
Net force on the wagon is 200 N
Explanation:
As we know by Newton's II law that net force on the system of mass is given as product of mass and acceleration
Here we know that
mass = 100 kg
a = 2 m/s/s
now we have