Answer:
5.09 x 10⁵ Nm²/C
Explanation:
The electric flux φ through a planar area is defined as the electric field Ε times the component of the area Α perpendicular to the field. i.e
φ = E A
From the question;
E = (8.0j + 2.0k) ✕ 10³ N/C
r = radius of the circular area = 9.0m
A = area of a circle = π r² [Take π = 3.142]
A = 3.142 x 9² = 254.502m²
Now, since the area lies in the x-y plane, only the z-component of the electric field is responsible for the electric flux through the circular area.
Therefore;
φ = (2.0) x 10³ x 254.502
φ = 5.09 x 10⁵ Nm²/C
The electric flux is 5.09 x 10⁵ Nm²/C
1 Kilojoule [kJ] = 737.562 149 277 27 Foot pound force [ftlbf]
Answer:
(a) nearsighted
(b) diverging
(c) the lens strength in diopters is 1.33 D, and considering the convention for divergent lenses normally prescribed as: -1 33 D
Explanation:
(a) The person is nearsighted because he/she cannot see objects at distances larger than 75 cm.
(b) the type of correcting lens has to be such that it counteracts the excessive converging power of the eye of the person, so the lens has to be diverging (which by the way carries by convention a negative focal length)
(c) the absolute value of the focal length (f) is given by the formula:

So it would normally be written with a negative signs in front indicating a divergent lens.
Answer:
1). 
2). Toward us
3). 
4). Toward us
5). 
6). Away from us
7). 
8). Away from us
Explanation:
Spectral lines will be shifted to the blue part of the spectrum if the source of the observed light is moving toward the observer, or to the red part of the spectrum when it is moving away from the observer (that is known as the Doppler effect).
The wavelength at rest is 121.6 nm (
)

Then, for this particular case it is gotten:
Star 1: 
Star 2:
Star 3:
Star 4:
Star 1:
Toward us
Star 2:
Toward us
Star 3:

Away from us
Star 4:

Away from us
Due to that shift the velocity of the star can be determine by means of Doppler velocity.
(1)
Where
is the wavelength shift,
is the wavelength at rest, v is the velocity of the source and c is the speed of light.
(2)
<em>Case for star 1
:</em>
<em></em>
Notice that the negative velocity means that is approaching to the observer.
<em>Case for star 2
:</em>
<em>Case for star 3
:</em>
<em>Case for star 4
:</em>