Answer:
See explanation
Explanation:
Tyndall effect refers to the scattering of light in a solution. Tyndall effect occurs when the size of particles in the solution exceeds 1 nm in diameter. Such solutions are actually called false solutions.
In tincture of iodine, the size of particles in solution is less than 1 nm in diameter hence the solution does not exhibit Tyndall effect. Hence, tincture of iodine is a true solution.
Therefore, if the size of particles in solution exceeded 1nm in diameter, Tyndall effect is observed.
Answer:
C.
Explanation:
The electronic configuration of N (7 electrons): 1s² 2s² 2p³.
The orbital 1s is filled with two electrons and their spinning direction is opposite and also electrons of 2s.
3p contains (3 electrons) should fill the 3 orbitals firstly. Every orbital contains 1 electron and be in the same spin direction.
So, the right choice is c.
A is wrong because 2 electrons of 3p are paired in the first orbital before filling every orbital.
B is wrong because the 2 electrons of 1s and 2s are in the same direction and also 2 electrons of 3p are paired in the first orbital before filling every orbital.
D is also wrong the 2 electrons of 1s and 2s are in the same direction and the electron in the second orbital of 3p are in opposite direction of the other 2 electrons.
Answer:
The transition from lower energy level to higher energy level require a gain of energy.
Explanation:
When transition occur from lower energy level to higher energy level require a gain of energy. Electron could not jump unto higher energy level without gaining thew energy.
When electron jump into lower energy level from high energy level it loses the energy.
For example electron when jumped from 2nd to 3rd shell it gain energy and when in return back to 2nd shell from 3rd shell it loses energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.
Answer:
3m/s
Explanation:
Data obtained from the question include:
Initial speed (s1) = 4 m/s
Final speed (S2) = 7m/s
Change in speed (ΔS)
ΔS = s2 — s1
ΔS = 7 — 4
ΔS = 3m/s
Therefore, the change in speed is 3m/s