Answer:
12.0 Volt
Explanation:
Step 1: Given data
Resistance of the ohmic dipole (R): 100 Ohm
Intensity of current (I): 120 mA (0.120 A)
Step 2: Calculate the voltage (V) across this chemical dipole
To calculate the voltage across the ohmic dipole, we will use Ohm's law.
I = V/R
V = I × R
V = 0.120 A × 100 Ohm = 12.0 V
Answer:
Approximately
upwards (assuming that
.)
Explanation:
External forces on this astronaut:
- Weight (gravitational attraction) from the earth (downwards,) and
- Normal force from the floor (upwards.)
Let
denote the magnitude of the normal force on this astronaut from the floor. Since the direction of the normal force is opposite to the direction of the gravitational attraction, the magnitude of the net force on this astronaut would be:
.
Let
denote the mass of this astronaut. The magnitude of the gravitational attraction on this astronaut would be
.
Let
denote the acceleration of this astronaut. The magnitude of the net force on this astronaut would be
.
Rearrange
to obtain an expression for the magnitude of the normal force on this astronaut:
.
The acceleration would be 6m/sThis is because of the formula, "f/m=a" to find the acceleration; We would need to subtract the force of the friction which equals 1380, then divide that by the mass (which was 230) to get the answer 6
The type of rock that could contain organic matter is C. Sedimentary. I hope this helps you!!