Answer: option A. r = 3x+2y
Explanation:
Vector r is plotted on the graph. On x-axis each small division corresponds to 1 unit. Similarly on y-axis, each small division corresponds to one unit.
The vector is the resultant of addition of its x and y components. we would draw perpendicular to the x-axis and y-axis from the head of vector r.
On x-axis,
= +3 units
on y-axis,
= +2 units

Hence, vector r can be written as: r = 3x + 2y . Correct option is A.
Answer:
https://www.khanacademy.org/science/physics/work-and-energy/work-and-energy-tutorial/a/what-is-conservation-of-energy
Explanation:
Look at this website it gives you all the details! :)
Answer:
4.9 minutes
Explanation:
Given; T(t) = Ce^-kt + Ts
Now;
T(t) = 190 degrees Fahrenheit
Ts = 60 degrees
To obtain C;
190 = Ce^0 + 60
190 - 60 = C
C = 130
Hence, to find k when t=11
172 = 130 e^-11k + 60
172 -60/130 = e^-k
e^-k = 0.86
ln(e^-k) = ln( 0.86)
-k = -0.15
k = 0.15
Hence at 122 degrees, t is;
T(t) = Ce^-kt + Ts
122 = 130e^-0.15t + 60
122 - 60/130 = e^-0.15t
0.477 = e^-0.15t
ln (e^-0.15t) = ln (0.477)
-0.15t = -0.74
t = 0.74/0.15
t = 4.9 minutes
Explanation:
The X-component of the velocity = Vcosx. Where, V = magnitude of the velocity. The x component of velocity will depend on the diagram. It the angle is measured from the x-axis which is considered the horizontal then Vx = Vcos(theta). The magnitudes of the components of velocity v → are v x = v cos θ and v y = v sin θ , v x = v cos θ and v y = v sin θ , where v is the magnitude of the velocity and θ is its direction relative to the horizontal, as shown in Figure 4.12. Derivation of the Trajectory Formula.
y = refers to the vertical position of the object in meters. x = refers to the horizontal position of the object in meters. Horizontal velocity component: Vx = V * cos(α)
Vertical velocity component: Vy = V * sin(α)
Time of flight: t = [Vy + √(Vy² + 2 * g * h)] / g.
Range of the projectile: R = Vx * [Vy + √(Vy² + 2 * g * h)] / g.
Maximum height: hmax = h + Vy² / (2 * g)