Answer:
mass multiplied by velocity (4 words but uh
The image distance when a boy holds a toy soldier in front of a concave mirror, with a focal length of 0.45 m. is -0.56 m.
<h3>What is image distance?</h3>
This is the distance between the image formed and the focus when an object is placed in front of a plane mirror.
To calculate the image distance, we use the formula below.
Formula:
- 1/f = 1/u+1/v........... Equation 1
Where:
- f = Focal length of the mirror
- v = Image distance
- u = object distance
From the question,
Given:
Substitute these values into equation 1 and solve for the image distance
- 1/0.45 = 1/0.25 + 1/v
- 2.22 = 4+1/v
- 1/v = 2.22-4
- 1/v = -1.78
- v = 1/(-1.78)
- v = -0.56 m
Hence, The image distance is -0.56 m.
Learn more about image distance here: brainly.com/question/17273444
<span>95 km/h = 26.39 m/s (95000m/3600 secs)
55 km/h = 15.28 m/s (55000m/3600 secs)
75 revolutions = 75 x 2pi = 471.23 radians
radius = 0.80/2 = 0.40m
v/r = omega (rad/s)
26.39/0.40 = 65.97 rad/s
15.28/0.40 = 38.20 rad/s
s/((vi + vf)/2) = t
471.23 /((65.97 + 38.20)/2) = 9.04 secs
(vf - vi)/t = a
(38.20 - 65.97)/9.04 = -3.0719
The angular acceleration of the tires = -3.0719 rad/s^2
Time is required for it to stop
(0 - 38.20)/ -3.0719 = 12.43 secs
How far does it go?
65.97 - 38.20 = 27.77 M</span>
Answer:
The tabletop is smooth so my finger is down it fast and easy. The fabric however slowed my finger down considerably, and it was harder for me to move my finger across it.
Explanation:
Hope this helps.
Answer:
4.4345× 10^-7V
Explanation:
The computation of the half voltage for a 1.2T magnetic field applied is shown below
The volume of one mole of copper is
v = m ÷p
= 63.5 ÷ 8.92
= 7.12cm
Now the density of free electrons in copper is
n = Na ÷ V
= 6.02 × 10^23 ÷ 7.12
= 8.456× 10^28/m^3
Now the half voltage is
= IB ÷ nqt
= (5 × 1.20) ÷ (8.456× 10^28 × 1.6 × 10^-19 × 0.1× 10^-2)
= 4.4345× 10^-7V