The car's rate of acceleration : a = 2.04 m/s²
<h3>Further explanation</h3>
Given
speed = 110 km/hr
time = 15 s
Required
The acceleration
Solution
110 km/hr⇒30.56 m/s
Acceleration is the change in velocity over time
a = Δv : Δt
Input the value :
a = 30.56 m/s : 15 s
a = 2.04 m/s²
The parietal layers of the membranes line the walls of the body cavity.
hope this helps
Answer:
a) 25.5°(south of east)
b) 119 s
c) 238 m
Explanation:
solution:
we have river speed
=2 m/s
velocity of motorboat relative to water is
=4.2 m/s
so speed will be:
a)
=
+
solving graphically

=4.7 m/s
Ф=
=25.5°(south of east)
b) time to cross the river: t=
=
=119 s
c) d=
=(2)(119)=238 m
note :
pic is attached
The example of the scientific practice is missing here but it should always involve the application of the scientific method.
<h3>What is the scientific method?</h3>
The scientific method is a series of steps by which researchers can collect empirical evidence that enables them to test hypotheses and generate scientific theories.
The scientific method starts with the observation of a given phenomenon from the real world, which then enables the raising of a question that in turn enables the formulation of a plausible explanation called hypothesis.
In conclusion, the example of the scientific practice is missing here but it should always involve the application of the scientific method.
Learn more about the scientific method here:
brainly.com/question/17216882
#SPJ1
Answer:
t = 1.41 sec.
Explanation:
If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.
First, we need to find the value of acceleration, which is the same for both blocks.
If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:
F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)
⇒ a = (
= g/5 m/s²
Once we got the value of a, we can use for instance this kinematic equation, and solve for t:
Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.