Answer:
The wavelength of sunlight that can cause this bond breakage is 242 nm
Explanation:
The minimum energy of the sunlight that'll break Oxygen-oxygen bond must match 495 KJ/mol
But 1 mole of any molecule contains 6.02 × 10²³ molecules/mol
Each molecule of Oxygen will require (495 × 10³)/(6.02 × 10²³) = 8.22 × 10⁻¹⁹ J
E = hf
v = fλ
f = v/λ
f = frequency of the sunlight
λ = wavelength of the sunlight
v = speed of light = 3.0 × 10⁸ m/s
E = hv/λ
λ = hv/E
h = Planck's constant = 6.63 × 10⁻³⁴ J.s
λ = (6.63 × 10⁻³⁴)(3 × 10⁸)/(8.22 × 10⁻¹⁹)
λ = 2.42 × 10⁻⁷ m = 242 nm.
Answer:
There are 75 people in the class. The number of boys is 48 and the number of girls is 27. The percentage of girls is 36% of 75.
Explanation:
Answer:
Energy is absorbed, so the mass is reduced.
Explanation:
The relationship between the mass and the energy is given by Einstein formula as :
![E=mc^2](https://tex.z-dn.net/?f=E%3Dmc%5E2)
m is the mass of an atom
c is the speed of light
When an atom is formed, the energy gets absorbed. As a result mass will decrease as per Einstein's equation. So, the correct option is (c) "Energy is absorbed, so the mass is reduced".
a.) Plants that thrive in the shade are often able to hold on to sunlight for extensive periods of time; they're in a sense like the camels of the plaNt WoRld.
b.) Though artificial lights are not nearly as beneficial as the sun, one could invest in one of them plant growing light thingies, but sun-loving plants might be sad if u do this instead of letting them soak in ePic rays from the sun.
Lear vv
F
B
C
D
A
E
G
greatest pressure ^^
I’m really sorry if I’m wrong