Step-by-step explanation:
Applying rules of exponents to solve the given problems;
4^3 x 4^5 =
5^8 ÷ 5^-2 =
(6^3 ) ^ 4 =
For these problems, the applicable rules of exponents are;
aᵇ x aⁿ = aᵇ⁺ⁿ
aᵇ ÷ aⁿ = aᵇ⁻ⁿ
(aᵇ)ˣ = aᵇˣ
For the first problem; 4³ x 4⁵
aᵇ x aⁿ = aᵇ⁺ⁿ
4³ x 4⁵ = 4³⁺⁵ = 4⁸
Second problem: aᵇ ÷ aⁿ = aᵇ⁻ⁿ
5⁸ ÷ 5⁻² = 5⁸⁻⁽⁻²⁾ = 5⁸⁺² = 5¹⁰
Third problem; (aᵇ)ˣ = aᵇˣ
(6³)⁴ = 6³ˣ⁴ = 6¹²
Answer:
D. a1=23/100, r=1/100
Step-by-step explanation:
The repeating fraction can be written as the sum ...

The first term is a1 = 0.23 = 23/100, and each successive term is shifted 2 decimal places to the right, so is multiplied by the common ratio r=1/100.
Answer:
Equal to each other
Step-by-step explanation:
I hope that helped!
Answer:

Step-by-step explanation:
A second order linear , homogeneous ordinary differential equation has form
.
Given: 
Let
be it's solution.
We get,

Since
, 
{ we know that for equation
, roots are of form
}
We get,

For two complex roots
, the general solution is of form 
i.e 
Applying conditions y(0)=1 on
, 
So, equation becomes 
On differentiating with respect to t, we get

Applying condition: y'(0)=0, we get 
Therefore,

Given

on the interval 0 ≤ x ≤ 7, for maximum value, f'(x) = 0.