Answer:
I would expect the gas rate determined in this manner to be too low
Explanation:
A Rotameter can be designed to respond to the sensitivity of density, velocity, to measure the flow rate of liquid or gas enclosed in a tube. Liquids are denser than gas, and since the gas rate to be determined needed to respond to the velocity head alone of the rotameter so as to bring the forces in the tube equilibrium. Knowing if there is no flow, then the float would remain at the bottom, so gas has to flow at a higher rate compared to the liquid so the float would be in a similar position making it easier to measure the flowrate. This leaves the gas rate to be determined too low.
Answer:
I believe it is 3 and 4. I really hope it is but i am positive :)
Answer:
a) Schmidt number
Explanation:
Prandtl number in heat transfer is analogues to Schmidt number in mass transfer.
Prandtl number in heat transfer is the ration of momentum diffusivity to the heat diffusivity.

Whereas, Schmidt number in mass transfer is the ratio of momentum diffusivity to the mass diffusivity.

Based on the balanced chemical reaction presented above, every mole of magnesium (Mg) yields one mole of diatomic hydrogen (H2). When converted to masses, every 24.3 grams of magnesium yields 2 grams of hydrogen.
From the given, there are 20 grams of magnesium available for the reaction. With this amount, the expected yield of hydrogen is 1.646 grams. To calculate the percent yield, divide the actual yield to the hypothetical yield.
*The case is impossible because the actual yield is greater than the theoretical yield.
If we assume that there had been a typographical error and that the actual yield is 0.7 grams instead of 1.7 grams, the percent yield becomes 42.5%. Thus, the answer is letter E.
Answer:
This is a typical stoichiometry question.To answer this question you want to get a relationship between
N
a
2
O and NaOH.
So you can get a relationship between the moles of
N
a
2
O
and moles of NaOH by the concept of stoichiometry.
N
a
2
O +
H
2
O ----------------> 2 NaOH.
According to above balanced equation we can have the stoichiometry relationship between
N
a
2
O and NaOH. as 1:2
It means 1 moles of
N
a
2
O is required to react with one mol of
H
2
O to produce 2 moles of NaOH.
in terms of mass 1 mole of
N
a
2
O has mass 62 g on reaction with water produces 2 moles of NaOH or 80 g of NaOH.
62 g of
N
a
2
O produces 80 g of NaOH.
1g of NaOH is produced from 62/80 g of
N
a
2
O
1.6 x
10
2
g of NaOH will require 62 x 1.6 x
10
2
g / 80 of
N
a
2
O
124g of
N
a
2
O.
Explanation: