According to zeroth law of thermodynamics, when two objects are kept in contact, heat (energy) is transferred from one to the other until they reach the same temperature (are in thermal equilibrium). When the objects are at the same temperature there is no heat transfer.
So, at equilibrium,
=
,
+ 
q=m×c×T, where q = heat energy, m = mass of a substance, c = specific heat (units J/kg∙K), T is temperature
=(15X13X4.19)+(148X88.3X4.19)
= 81.37 ° C
Answer:
35.578g or 36g if you round
Explanation:
Q=mc ∆∅ where ∅ is temperature difference
1160= m x 1.716 x (42-23)
m = 1160/ 1.716 x19
m=35.578g
m = 36g to nearest whole number
Answer:
Burning wood
Explanation:
the fire releases heat into the air from the burning wood
Answer : The total mass of oxygen gas released in the reaction will be, 12.8 grams
Explanation :
Law of conservation of mass : It states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The balanced chemical reaction will be,

According to the law of conservation of mass,
Total mass of reactant side = Total mass of product side
Total mass of
= Total mass of 
or,
Total mass of
= Mass of
+ Mass of 
As we are given :
Total mass of
= 16.12 grams
The mass of
= 9.72 grams
So,
Total mass of
= Mass of
+ Mass of 


Therefore, the total mass of oxygen gas released in the reaction will be, 12.8 grams