Answer:
Partial pressure of CO₂ is 406.9 mmHg
Explanation:
To solve the question we should apply the concept of the mole fraction.
Mole fraction = Moles of gas / Total moles
We have the total moles of the mixture, if we have the moles for each gas inside. (3.63 moles of O₂, 1.49 moles of N₂ and 4.49 moles of CO₂)
Total moles = 3.63 mol O₂ + 1.49 mol N₂ + 4.49 mol CO₂ = 9.61 moles
To determiine the partial pressure of CO₂ we apply
Mole fraction of CO₂ → mol of CO₂ / Total moles = P. pressure CO₂ / Total P
Partial pressure of CO₂ = (mol of CO₂ / Total moles) . Total pressure
We replace values: (4.49 moles / 9.61 moles) . 871 mmHg = 406.9 mmHg
Explanation:
A chemical bond which is formed in between positively charged atoms when there is sharing of free electrons in a lattice of cations is known as a metallic bond.
In a pure metal, atoms are surrounded by free moving valence electrons which move from one part of metal to another.
Thus, we can conclude that pure metals are held together by metallic bonds due to attraction between mobile valence electrons and positively charged metal ions.
Mixtures are a group of elements that are mixed together but not chemically combined
Elements are the fundamental materials of which all matter is composed.
Element: A substance that is made up of only one type of atom. Compound: A substance that is made up of more than one type of atom bonded together. Mixture: A combination of two or more elements or compounds which have not reacted to bond together
Answer:
HBr + H₂SO₄ → SO₂ + Br₂ + H₂O An oxidizing agent is a substance that itself becomes reduced and oxidizes the other chemical species in the reaction mixture. A reducing agent is similar, except that it becomes oxidized and reduces the other substance. In the reaction, the valency of bromine changes from -1 to 0, so it is oxidized
Explanation: