Answer:
1,620 J.
Explanation:
- The amount of heat added to a substance (Q) can be calculated from the relation:
<em>Q = m.c.ΔT.</em>
where, Q is the amount of heat released from ethanol cooling,
m is the mass of ethanol (m = 60.0 g),
c is the specific heat of ethanol in the liquid phase, since the T is cooled below the boiling point and above the melting point (c = 1.0 J/g °C),
ΔT is the temperature difference (final T - initial T) (ΔT = 43.0 °C – 70.0 °C = - 27.0 °C).
<em>∴ Q = m.c.ΔT</em> = (60.0 g)(1.0 J/g °C)(- 27.0 °C) = - 1620 J.
<em>The system releases 1620 J.</em>
Answer:
When our bodies are dry and wind blows by, we lose some energy to the air molecules. When are bodies are wet, we have a substance on our skin that likes to absorb heat. So when wind blows by, we lose a LOT of energy to the air molecules. When the body loses heat energy, our body temperature drops.
Explanation:
hope it helps
<u>plzz </u><u>mark</u><u> it</u><u> as</u><u> brainliest</u><u>.</u><u>.</u><u>.</u>
Answer:
Gas is for example oxygen or the air we breath and liquid is water.
Explanation:
Answer:
Number of moles of Fe = 10 mol
Number of moles of CO₂ = 15 mol
Explanation:
Given data:
Number of moles of iron oxide = 5 mol
Number of moles of carbon monoxide = 25 mol
Number of moles of product = ?
Solution:
Fe₂O₃ + 3CO → 2Fe + 3CO₂
Now we will compare the moles of reactant with product.
Fe₂O₃ : Fe
1 : 2
5 : 2×5 = 10 mol
Fe₂O₃ : CO₂
1 : 3
5 : 3×5 = 15 mol
CO : Fe
3 : 2
25 : 2/3×25 = 16.7 mol
CO : CO₂
3 : 3
25 : 25
Less number of moles of Fe and CO₂ are formed by iron oxide thus it will act as limiting reactant while CO is inn excess.