Answer:
The answer to your question is: letter B
Explanation:
Reaction
Cr2O3(s) + 3CCl4(l) ⇒ 2CrCl3(s) + 3COCl2(g)
From the information given and the reaction, we can conclude that:
Green solid = Cr2O3 (s) "s" means solid
Colorless liquid = CCl4 (l) "l" means liquid and is the other reactant
Purple solid = CrCl3(s) CrCl3 is purple and "s" solid
Then, as a green specks remains it means that the excess reactant is Cr2O3, so, CCl4 is the limiting reactant.
Assuming that the percentage composition is on the basis of weight percentage, therefore the mass of lithium would simply be the product of the two, that is:
mass Lithium = 0.188 * 1.70 g
mass Lithium = 0.3196 g = 0.32 g
Answer:
CaCl₂ > CH₃OH = LiCl > C₆H₁₂O₆
Explanation:
The osmotic pressure of a compound is calculated using the following expression:
π = MRT (1)
This expression is used when the substance is nonelectrolyte. If the solution is electrolyte solution then we need to count the van't hoff factor into the expression so:
π = MRTi (2)
Now, we have 4 solutions here, only two of them are electrolyte solution, this means that these solutions can be dissociated into separate ions. These solutions are LiCl and CaCl₂. It can be shown in the following reactions:
LiCl -------> Li⁺ + Cl⁻ 2 ions (i = 2)
CaCl₂ ---------> Ca²⁺ + 2Cl⁻ 3 ions (i = 3)
The methanol (CH₃OH) and glucose (C₆H₁₂O₆) are non electrolyte solutions, therefore they are not dissociated. So, let's use expression (1) for methanol and glucose, and expression (2) for the salts:
CaCl₂: π = 1 * 3 * RT = 3RT
CH₃OH: π = 2 * RT = 2RT
C₆H₁₂O₆: π = 1 * RT = 1RT
LiCl: π = 1 * 2 * RT = 2RT
Finally with these results we can conclude that the decreasing order of these solutions according to their osmotic pressures are:
<h2>
CaCl₂ > CH₃OH = LiCl > C₆H₁₂O₆</h2>