Answer:
True
Explanation:
A magnetic field is made when an electric current flows through a wire.
put 8 in front of the oxygen in the reactants side to make it 16 molecules then put a 5 in front of the co2 in the product side to balance the carbon atoms then put a 6 in front of the H20 on the product side this balances both the hydrogen and oxygen atoms here is a representation
C5H12(g)+8O2(g)=5CO2(g)+6H20
Left Panel
A is an acid. Not the answer.
B is correct. That would be a base. But it is not an Arrhenius base. Keep reading.
C that is exactly what an Arrhenius base is.
D. No an acid of some sort would accept OH ions.
Right Panel
D is concentrated and it is also a weak base. Good cleaning fluid. Smells awful but it works.
In a saturated solution, extra solid X would remain solid, dissolve in an unsaturated solution, and crystallize in a supersaturated one.
A solution is said to be saturated when there is a maximum amount of solute present that has been dissolved in the solvent. As a result, the system is in an equilibrium between the dissolved and undissolved solutes: A solution is considered to be unsaturated if the solute concentration is less than the equilibrium solubility. A supersaturated solution is one that has more solute than is necessary to generate a saturated solution at a given temperature.
Learn more about Supersaturated here-
brainly.com/question/16817894
#SPJ4
Answer:
d. 103.3
Explanation:
In the given question, the National Weather Service routinely supplies atmospheric pressure data to help pilots set their altimeters. And the units of atmospheric pressure used for reporting the atmospheric pressure data are inches of mercury. For a barometric pressure of 30.51 inches of mercury, we can calculate the pressure in kPa as follow:
In principle, 3.386 kPa is equivalent to the atmospheric pressure of 1 inch of mercury. Thus, 30.51 inches of mercury is equivalent to 30.51 in *(3.386 kPa/1 in) = 103.307 kPa.
Therefore, a barometric pressure of 30.51 inches of mercury corresponds to _____103.3_____ kPa.