Groups of atoms that line up to makes something magnetic
Answer:
hope helps
Explanation:
In a weightless environment a force of 5 Newtons is applied horizontally to the right on a rock with a mass of 1 kg and to a pebble with a mass of 0.1 kg.
Answer:
8 time increase in K.E.
Explanation:
Consider Mass of truck = m kg and speed = v m/s then
K.E. = 1/2 ×mv²
If mass and speed both are doubled i.e let m₀ = 2m and v₀ = 2v then
(K.E.)₀ = 1/2 ×2m(2v)²
(K.E.)₀ = 8 (1/2 × mv²) = 8 × K.E.
Answer:
External force on him = 257.40 N
Equation is; F = ma (where 'f' is force, 'm' is mass and 'a' is acceleration)
Explanation:
The mass of the sprinter is 58.5 kg
His acceleration is 4.40 m/s²
According to Newton's second law of motion; F = ma
External force on the sprinter = 58.5 kg × 4.40 m/s² = 257.40 N
Answer:
E/4
Explanation:
The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
Where;
E is the electric field
σ is the surface charge density
ε₀ is the electric constant.
Formula to calculate σ is;
σ = Q/A
Where;
Q is the total charge of the sheet
A is the sheet's area.
We are told the elastic sheet is a square with a side length as d, thus ;
A = d²
So;
σ = Q/d²
Putting Q/d² for σ in the electric field equation to obtain;
E = Q/(2ε₀d²)
Now, we can see that E is inversely proportional to the square of d i.e.
E ∝ 1/d²
The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.
From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;
E_new = E/4