Answer:

Explanation:
<u>Average Acceleration
</u>
Acceleration is a physical magnitude defined as the change of velocity over time. When we have experimental data, we can compute it by calculating the slope of the line in velocity vs time graph.
Note: <em>We cannot see if the time axis is numbered in increments of 1 second, and we'll assume that.
</em>
When
, the graph shows a value of
When
, the object is at rest, 
We compute the average acceleration as




Answer:
4. The choose b. 0.000355
Ans; 3.55× 10-⁴ = 0.000355
5. The choose C. 80600
Ans; 8.06 ×10⁴= 806×10² = 80600
I hope I helped you^_^
Answer:
option (b) 4900 N
Explanation:
m = 2000 kg, R = 6380 km = 6380 x 10^3 m, Me = 5.98 x 10^24 kg, h = R
F = G Me x m / (R + h)^2
F = G Me x m / 2R^2
F = 6.67 x 10^-11 x 5.98 x 10^24 x 2000 / (2 x 6380 x 10^3)^2
F = 4900 N
Answer:
Gravity
Explanation:
That's easy because gravity is the only thing that can pull us down that hard at that fast without anything helping it.
Answer:
1.8x10⁻³m
Explanation:
From the question above, the following information was used to solve the problem.
wavelength λ = 4.5x10⁻⁷m
Length L = 2.0 meters
distance d = 5 x 10₋⁴m
ΔY = λL/d
= 4.5x10⁻⁷m (2) / 5 x 10₋⁴m
= 0.00000045 / 0.0005
= 0.0000009/0.0005
= 0.0018
= 1.8x10⁻³m
from the solution above The separation between two adjacent bright fringes is most nearly 1.8x10⁻³m
thank you!