The Law of Conservation of Energy states that, in an isolated system, energy remains constant and can not be created or destroyed, only transferred from one form to another. This law was created by Julius Robert Mayer.
Daniddmelo says it right there, don't know why he got reported.
The potential energy (PE) is mass x height x gravity. So it would be 25 kg x 4 m x 9.8 = 980 joules. The child starts out with 980 joules of potential energy. The kinetic energy (KE) is (1/2) x mass x velocity squared. KE = (1/2) x 25 kg x 5 m/s2 = 312.5 joules. So he ends with 312.5 joules of kinetic energy. The Energy lost to friction = PE - KE. 980- 312.5 = 667.5 joules of energy lost to friction.
Please don't just copy and paste, and thank you Dan cause you practically did it I just... elaborated more? I dunno.
When the velocity of an object changes, it is acted upon by a force
Interference and diffraction are the phenomena that support only the wave theory of light. Options 2 and 3 are correct.
<h3 /><h3>What is the interference of waves?</h3>
The result of two or more wave trains flowing in opposite directions on a crossing or coinciding pathways. This phenomenon is known as the interference of waves.
The phenomenon of interference occurs when two wave pulses are traveling along a string toward each other.
The light wave hypothesis states that light behaves like a wave. Since light is an electromagnetic wave, it may be transmitted without a physical medium.
Light has magnetic and electric fields, much like electromagnetic waves do.
Transverse waves, such as those seen in light waves, oscillate in the same direction as the wave's path. A wave of light may experience interference as well as diffraction as a result of these properties.
All of the remaining options are the light phenomenon.
Hence, options 2 and 3 are correct.
To learn more about the interference of waves refer to the link;
brainly.com/question/16098226
#SPJ1