You would use distance an time formula to mathmaticly solve
We should first calculate the highest point that ball reaches.
y' = 40 - 32t = 0
t = 40/32 = 1,25s
y = 25 feet.
To calculate average velocity we use simple formula:
Vav=s/t where s is traveled distance by the time t.
for t=2 we calculate y
y = 16
(i) for t = 2,5 y = 0
Vav = 16/0.5 = 32 feet/s
(ii) for t = 2.1 y = 13.44
Vav = 2.56/0.1 = 25.6 feet/s
(iii) for t = 2.01 y = 15.7584
Vav = 0.2416/0.01= 24.16 feet/s
it seems like the answer would be 24 feet/s. There is a way to calculate that.
Refer to the diagram shown below.
Define the (x,y) plane as the horizontal plane of the floor.
There was no momentum in the (x,y) plane before the plate hit the floor.
Let the velocity components in the (x) and (y) directions of the 100 g mass be Vx and Vy respectively, and that the resultant velocity, V, makes an angle θ below the negative x-axis as shown.
Because momentum is conserved, therefore
100*Vx + 320*2 = 0
100Vx = -640
Vx = -6.4 m/s
100Vy + 355*1.5 = 0
100Vy = -532.5
Vy = -5.325 m/s
V = √[(-6.4)² + (-5.325)²] = 8.33 m/s
θ = tan⁻¹ (-5.325/-6.4) = 39.8°
Answer:
The direction is 39.8° below the negative x-axis
The speed is 8.33 m/s
i am 2.5 with the thhe 2020 is 3 and 5 is 7