The acceleration of body is given 16.3m/s2 and the force is given 4.6 N then
We know,
Force=mass*acceleration
Then,
Mass=force/acceleration
Mass=4.6/16.3
Mass=0.28kg
Answer:
Yes
Explanation:
There are so many planets out there that there must be habitable planets if not in our galaxy but the Universe.
Although the chances of advanced life are slim, small primitive life like microbes or sea life may still exist.
The radius of the sphere in meters is ,r =
Think about the angle the ground and the shadow make. Since the sun's beams are parallel, the angle created by the stick's shadow is also equal. Since the stick is 1 m high and its shadow is 2 m long, we know that the stick's angle is arctan 1/2. Therefore, by thinking of a right-angled triangle,
r/10 = tan [arctan(1/2)] = tan (1/2)
Since, tan (θ/2) = 1-cos(θ) / sin(θ)
we find that,
r/10 = 
Hence, r = 
So, the radius of the sphere in meters is ,r =
Learn more about radius (r) of the sphere here;
brainly.com/question/14100787
#SPJ4
Answer:
25 mm = 0 deg C
200 mm = 100 deg C
200 - 25 = 175 = change in thread per 100 deg C
95 - 25 = 70 mm - change in thread from 0 deg C
70 / 175 * 100 = 40 deg C final temperature at 95 mm
Answer:
E. Student 1 is correct, because as θ is increased, h is the same.
Explanation:
Here we have the object of a certain mass falling under gravity so the force acting on the it will depend on mass of the object and the acceleration due to gravity.
Mathematically:

As we know that the work done is evaluated as the force applied on a body and the displacement of the body in the direction of the force.
And for work we have:

where:
displacement of the object
angle between the force and displacement vectors
Given that the height of the object is same in each trail of falling object under the gravity be it a free-fall or the incline plane.
- In case of free-fall the angle between the force is and the displacement is zero.
- In case when the body moves along the inclined plane the force applied by the gravity is same because it depends upon the mass of the object. And the net displacement in the direction of the gravitational force is the height of the object which is constant in both the cases.
So, the work done by the gravitational force is same in the two cases.