Answer:
Such molecule must have molecular formula of C15N3H15
Explanation:
Mass of carbon in such molecule

The atomic mass of carbon is 12.01 g/mol, so in 182.28 g of carbon there is 15.18 mols of carbon.
Mass of Nitrogen in such molecule

The atomic mass of nitrogen is 14.01 g/mol, so in 42.53g of nitrogen there is 3.04 mols of nitrogen.
Mass of Hydrogen in such molecule

The atomic mass of Hydrogen is 1.00 g/mol, so in 15.19 g of Hydrogen there is 15.19 mols of Hydrogen.
Such molecule must have molecular formula of C15N3H15
Hey there!
Na + H₂O → NaOH + H₂
First, balance O.
One on the left, one on the right. Already balanced.
Next, balance H.
Two on the left, three on the right. Let's add a coefficient of 2 in front of NaOH and a coefficient of 2 in front of H₂O, so we have 4 on each side.
Na + 2H₂O → 2NaOH + H₂
Lastly, balance Na.
One on the left, two on the right. Add a coefficient of 2 in front of Na.
2Na + 2H₂O → 2NaOH + H₂
This is our final balanced equation.
Hope this helps!
Answer:
Hello my Friend! The answer is: Manganese(III) oxide is a transition metal compound. The oxidation state of manganese in this compound is +3 , and the chemical formula of the compound is Mn2O3.
Explanation:
Manganese can have two oxidation states: +2 and +3, but in this case, the "(III)" indicates that in this compound, the state of oxidation is +3.
Because they consume prey from all trophic levels beneath them.