In a chemical reaction, the difference between the potential energy of the products and the potential energy of the reactants is equal to the heat of the reaction<span>. This is, the net energy released or absorbed (change) during a chemical reaction is the sum of the potential energy of the products less the sum of the potential energy of the reactants.</span>
Answer:
Water (H20)
Explanation:
When an acid combine with a base, the reaction is called neutralization and it produces salt and water. This can be seen from the reaction between HCl and NaOH as shown below:
HCl + NaOH —> NaCl + H2O
From the above equation, we see clearly that salt (NaCl) and water (H2O) are the new products form.
OILRIG:
Oxidation is loss (of electrons)
Reduction is gain (of electrons)
so...
The first one is an oxidation half-equation as the Sn loses electrons;
The second one is a reduction half-equation as the Cl₂ gains electrons
Answer:
P = 0.6815 atm
Explanation:
Pressure = 754 torr
The conversion of P(torr) to P(atm) is shown below:
So,
Pressure = 754 / 760 atm = 0.9921 atm
Temperature = 294 K
Volume = 3.1 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
0.9921 atm × 3.1 L = n × 0.0821 L.atm/K.mol × 294 K
⇒n of helium gas= 0.1274 moles
Surface are = 1257 cm²
For a sphere, Surface area = 4 × π × r² = 1257 cm²
r² = 1257 / 4 × π ≅ 100 cm²
r = 10 cm
The volume of the sphere is :
Where, V is the volume
r is the radius
V = 4190.4762 cm³
1 cm³ = 0.001 L
So, V (max) = 4.19 L
T = 273 K
n = 0.1274 moles
Using ideal gas equation as:
PV=nRT
Applying the equation as:
P × 4.19 L = 0.1274 × 0.0821 L.atm/K.mol × 273 K
<u>P = 0.6815 atm</u>
<u></u>