Let x = no. of 10 oz cups sold
Let y = no. of 14 oz cups sold
Let z = no. of 20 oz cups sold
:
Equation 1: total number of cups sold:
x + y + z = 24
:
Equation 2: amt of coffee consumed:
10x + 14y + 20z = 384
:
Equation 3: total revenue from cups sold
.95x + 1.15y + 1.50z = 30.60
:
Mult the 1st equation by 20 and subtract the 2nd equation from it:
20x + 20y + 20z = 480
10x + 14y + 20z = 384
------------------------ subtracting eliminates z
10x + 6y = 96; (eq 4)
Mult the 1st equation by 1.5 and subtract the 3rd equation from it:
1.5x + 1.5y + 1.5z = 36.00
.95x + 1.15y+ 1.5z = 30.60
---------------------------subtracting eliminates z again
.55x + .35y = 5.40; (eq 5)
Multiply eq 4 by .055 and subtract from eq 5:
.55x + .35y = 5.40
.55x + .33y = 5.28
--------------------eliminates x
0x + .02y = .12
y = .12/.02
y = 6 ea 14 oz cups sold
Substitute 6 for y for in eq 4
10x + 6(6) = 96
10x = 96 - 36
x = 60/10
x = 6 ea 10 oz cups
That would leave 12 ea 20 oz cups (24 - 6 - 6 = 12)
Check our solutions in eq 2:
10(6) + 14(6) + 20(12) =
60 + 84 + 240 = 384 oz
A lot steps, hope it made some sense! I hope this helps!! ;D
Answer:
12m
Step-by-step explanation
If the height of the ball after x seconds be modelled by the equation
h(x)=−(x−2)² +16
The height of the ball at the time it is thrown will be the height at the initial time. At that point that it is initially thrown the time is 0seconds i.e x = 0
To get the height at t x = 0seconds, we will substitute x = 0 into the modeled function to have;
h(0) = -(-0-2)²+16.
h(0) = -(-2)²+16
h(0) = -4+16
h(0) = 12
The height of the ball at the time the ball is thrown is 12m
Answer:
The percent markup is 91%.
Step-by-step explanation:
1. find the amount of profit per large bucket of popcorn
9 - 0.8 = $8.2
2. divide the amount of profit per large bucket of popcorn by the cost of a large bucket of popcorn
8.2 / 9 = <u>91%</u>