Answer:
The outbreak of tornadoes that tore across the Gulf and the East Coast Tuesday and Wednesday was unusual for two reasons. For one thing, the severe weather encompassed a significant swath of the country. For another, winter is the least likely time for tornadic thunderstorms.
Explanation:
The outbreak of tornadoes that tore across the Gulf and the East Coast Tuesday and Wednesday was unusual for two reasons. For one thing, the severe weather encompassed a significant swath of the country. For another, winter is the least likely time for tornadic thunderstorms.
And yet tornadoes are an expected part of life in the United States—especially in the multi-state area known as Tornado Alley. (Florida, too, sees a disproportionately high number of tornadoes, because of its frequent thunderstorms.) The United States gets more tornadoes, by far, than any other place on the planet. It averages about 1,250 twisters a year. Canada, which sees about 100 tornadoes per year, is a “distant second,” according to the National Centers for Environmental Information.
The gravitational acceleration of a planet is proportional to the planet's mass, and inversely proportional to square of the planet's radius.
So when you stand on the surface of this particular planet, you feel a force of gravity that is
(1/2) / (3²)
of the force that you feel on the surface of the Earth.
That's <em>(1/18)</em> as much as on Earth.
The acceleration of gravity there would be about <em>0.545 m/s²</em>.
This is about 12% less than the gravity on Pluto.
In addition to acceleration of gravity we experience centrifugal acceleration away from the axis of rotation of the earth. this additional acceleration has value ac = r w^2 where w = angular velocity and r is distance from your spot on earth to the earth's axis of rotation so r = R cos(l) where l = 60 deg is the lattitude and R the earth's radius and w = 1 / (24hr x 3600sec/hr)
<span>now you look up R and calculate ac then you combine the centrifugal acc. vector ac with the gravitational acceleration vector ag = G Me/R^2 to get effective ag' = ag -</span>
Answer:
5.5 × 10-2 hertz
Explanation:
The time taken by a wave crest to travel a distance equal to the length of wave is known as wave period.
= 0.055 per second (1 cycle per second = 1 Hertz)
Thus, we can conclude that the frequency of the wave is 5.5 X 10^{-2} hertz.
Hopes this helps, love <3