Answer:
(a) v = 65.35 m/s
(b) ac = 82.16 m/s²
Explanation:
Kinematic of the blades of the wind turbine
The blades of the wind turbine describe circular motion and the formulas that apply to this movement are as follows:
v = ω * R Formula (1)
Where:
v : tangential velocity (m/s)
ω : angular velocity (rad/s)
R : radius of the particle path (m)
The velocity vector is tangent at each point to the trajectory and its direction is that of movement. This implies that the movement has centripetal acceleration (ac):
ac = ω²* R Formula (1)
ac : centripetal acceleration (m/s²)
Data:
ω= 12 rpm = 12 rev/min
1 rev = 2π rad
1 min = 60 s
ω= 12 rev/min = 12 (2π rad)/(60 s)
ω = 1.257 rad/s
R = 52 m
(a)Tangential velocity at the tip of a blade (v)
We apply the formula (1)
v = ω* R
v = ( 1.257)* (52) = 65.35 m/s
(a) Centripetal acceleration at the tip of a blade (ac)
We apply the formula (2)
ac = ω²*R
ac = ( 1.257)²* (52) = 82.16 m/s²
Answer:
True
Explanation:
Scientific laws are often written as expressions that contains variables and are laws that are binding themselves.
In science, laws are natural phenomenon that draws from careful observations that holds through following a series of detailed study. Within the range of assumed parameters, a law will always hold true.
Most laws in science are denoted using mathematical variables which helps to interpret them.
The variables shows the relationship between the different parts of the law.
For example, Newton's law of universal gravitation is expressed mathematically as shown below;
F = 
where G, m and r are all variables.
G is the universal gravitation constant
m is mass
r is the distance between them.
F is the gravitational force.
Most scientific laws are often expressed in this format.
Answer:
B. 15 miles an hour going west