1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svp [43]
3 years ago
12

PLEASE ANSWER ASAP I REALLY NEED HELP!!!!!!

Physics
1 answer:
Andrews [41]3 years ago
4 0

Answer:

In thermodynamics, heat is transferred energy that moves between substances or systems because of their temperature difference. According to the first law of thermodynamic and the law of energy conversion s a form of energy, heat is cannot be created or destroyed only moves from one form to other.

The stone gets heat energy from fire and moves this heat energy or thermal energy to water as it cools off and the water warms up. Heat moves or is transferred spontaneously from the hot stone into the cold water. Eventually, the stone and water have the same temperature and water becomes heated. At the time of heat flowing out of the stone into the water, the heat energy became less ordered, due to spreading out through both the stone and the water. This is a net increase in entropy which is the second law of entropy.

You might be interested in
In a heat engine if 1000 j of heat enters the system the piston does 500 j of work, what is the final internal energy of the sys
nydimaria [60]

Answer : The final energy of the system if the initial energy was 2000 J is, 3500 J

Solution :

(1) The equation used is,

\Delta U=q+w\\\\U_{final}-U_{initial}=q+w

where,

U_{final} = final internal energy

U_{initial} = initial internal energy

q = heat energy

w = work done

(2) The known variables are, q, w and U_{initial}

initial internal energy = U_{initial} = 2000 J

heat energy = q = 1000 J

work done = w = 500 J

(3) Now plug the numbers into the equation, we get

U_{final}-(2000J)=(1000J)+(500J)

(4) By solving the terms, we get

U_{final}-(2000J)=(1000J)+(500J)

U_{final}-(2000J)=1500J

U_{final}=2000J+1500J

U_{final}=3500J

(5) Therefore, the final energy of the system if the initial energy was 2000 J is, 3500 J

5 0
3 years ago
if ur riding a bike uphill do you want the output force to be greater than the input force or does the output force have to be l
andrey2020 [161]

Answer: you want your input force harder

Explanation:

8 0
3 years ago
If the distance d (in meters) traveled by an object in time t (in seconds) is given by the formula d = A + Bt^2, the SI units of
Yuliya22 [10]

Answer:

The SI units of the “A” is m (meters)

The SI units of the “B” is m/s^2

Explanation:

Given the distance = d meters.

Time taken to travel = t (seconds)

Function of the distance, d = A + Bt^2

Now we have given the above information and from the given distance function, we have to find the SI units of the A and B. Here, below are the SI units.

Thus, the SI units of the “A” is = m (meters)

The SI units of the “B” is = m/s^2

6 0
4 years ago
Please select the word from the list that best fits the definition
alexdok [17]

Answer:

yuuuhhhhhhh

Explanation:

it maxed Imao

4 0
3 years ago
Read 2 more answers
Your friend, who is in a field 100 meters away from you, kicks a ball towards you with an initial velocity of 16 m/s. Assuming t
LekaFEV [45]

Answer:

Time, t = 5.355 seconds

Explanation:

Given the following data;

Distance = 100 m

Initial velocity = 16 m/s

Deceleration = 1 m/s²

To find the time, we would use the second equation of motion;

But since the ball is decelerating, it's acceleration would be negative.

S = ut + ½at²

Where;

S represents the displacement or height measured in meters.

u represents the initial velocity measured in meters per seconds.

t represents the time measured in seconds.

a represents acceleration measured in meters per seconds square.

Substituting into the equation, we have;

100 = 16t - 0.5t²

200 = 32t - t²

t² + 32t - 200 = 0

Solving the quadratic equation using the quadratic formula;

The quadratic equation formula is;

x = \frac {-b \; \pm \sqrt {b^{2} - 4ac}}{2a}

Substituting into the equation, we have;

x = \frac {-32 \; \pm \sqrt {32^{2} - 4*1*(-200)}}{2*1}

x = \frac {-32\pm \sqrt {1024 - (-800)}}{2}

x = \frac {-32 \pm \sqrt {1024 + 800}}{2}

x = \frac {-32 \pm \sqrt {1824}}{2}

x = \frac {-32 \pm 42.71}{2}

x_{1} = \frac {-32 + 42.71}{2}

x_{1} = \frac {10.71}{2}

x1 = 5.355

We do not need the negative value of x, so we proceed.

Therefore, time = 5.355 seconds

3 0
3 years ago
Other questions:
  • Antiballistic missiles (ABMs) are designed to have very large accelerations so that they may intercept fast-moving incoming miss
    14·1 answer
  • How long was a 60 W light bulb turned on if it used a total of 580 J of energy?
    14·1 answer
  • Are mushrooms, producers, consumers, or decomposers?
    7·1 answer
  • What is the power of a parallel circuit with a resistance of 1,000 and a current of 0.03 A?
    10·1 answer
  • While John is traveling along an interstate highway, he notices a 150 mi marker as he passes through town. Later John passes a 1
    15·2 answers
  • It is observed that the time for the ball to strike the ground at b is 2.5 s. determine the speed at which the ball was thrown.
    8·1 answer
  • A water heater that has the shape of a right cylindrical tank with a radius of 1 foot and a height of 4 feet is being drained. h
    14·1 answer
  • An electron drops from the n=6 to the n=4 level of an infinite square well that is 3.10-11 m wide. What is the wavelength of the
    7·1 answer
  • La resistencia de un termómetro de platino es de 6Ω a30°C. Hallar su valor correspondiente a 100°C,sabiendo que el coeficiente d
    14·1 answer
  • Jada was roller skating at 8 m/s with a total mass of 30 kg. Korbin gently pushed her and she increased her speed to 11 m/s. Fin
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!