C) 3 Moles
This is because of the molecular structure shown in the image
Balance Chemical Equation for this reaction is,
2 CH₄ + O₂ → 2CH₃OH
According to this eq, 22.4 L (1 moles) of Oxygen requires 44.8 L (2 mole) CH₄ for complete reaction.
So, the volume of CH₄ required to consume 0.66 L of O₂ is calculated as,
22.4 L O₂ required to consume = 44.8 L CH₄
0.660 L O₂ will require = X L of CH₄
Solving for X,
X = (44.8 L × 0.660 L) ÷ 22.4 L
X = 1.320 L of CH₄
Result:
1.320 L of CH₄ <span>gas is needed to react completely with 0.660 L of O</span>₂<span> gas to form methanol (CH</span>₃OH<span>).</span>
Answer:
because a mosquito net prevent mosquito bites
Answer: when reactants and products are gases at STP.
Justification:
1) STP stands for standard temperature (0°) and pressure (1 atm).
2) According to the kinetic molecular theory of the gases, and as per Avogadro's principle, equal volumes of gases, at the same temperature and pressure, have the same number of molecules.
3) Since the coefficients in a balanced chemical equation represent number of moles, when reactants and products are gases at the same temperature and pressure, the mole ratios are the same that the volume ratios, and then the coefficients of the chemical equation represent the volume ratios.