<span>Answer is: 2940 mL of
the HCL solution.</span>
c₁(HCl) = 10.0 M.
V₂(AgNO₃<span>) = ?.
c</span>₂(AgNO₃<span>) = 0.85 M.
V</span>₁(AgNO₃<span>) = 250 mL </span>÷ 1000 mL/L = 0.25 L.
<span>
c</span>₁<span> - original concentration of the solution, before it
gets diluted.
c</span>₂<span> - final concentration of the solution, after dilution.
V</span>₁<span> - volume to be diluted.
V</span>₂<span> - final volume after dilution.
c</span>₁ · V₁ = c₂ · V₂<span>.
V</span>₂(HCl) = c₁ · V₁ ÷ c₂.
<span>
V</span>₂(HCl) = 10 M · 0.25 L ÷ 0.85 M.
<span>
V</span>₂(HCl) = 2.94 L ·
1000 mL = 2940 mL.
Explanation:
Components that throughout chemical processes appear to acquire electrons to achieve anions are considered non-metals. These were all elements which are electronegative. Those who are – anti conductors of electricity and heat, fragile and disadvantaged.
Answer:
Final temperature = 91.75 °C
Explanation:
Given data:
Mass of water = 45 g
Initial temperature = 12 °C
Energy required = 15 Kj (15000 j)
Final temperature = ?
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Solution:
Q = m.c. ΔT
15000 j = 45 g × 4.18 j/g.°C × (T2 -T1)
15000 j = 45 g × 4.18 j/g.°C × (T2- 12 °C)
15000 j = 188.1 J/°C × (T2- 12 °C)
15000 j / 188.1 J/°C = T2- 12 °C
79.745 °C = T2 - 12 °C
T2 = 79.745 °C + 12 °C
T2 = 91.75 °C