Answer:
Yes
Explanation: Electric and magnetic field are known to be inter-related, this implies that for any current carrying conductor there is a resulting magnetic field around the wire ( for example a current carrying conductor deflects a compass) and a magnetic field has been known to produce some amount current based on the<em> </em>principle of electromagnetic induction by Micheal Faraday.
The strength of magnetic field generated by a current carrying conductor is given by Bio-Savart law (purely mathematical) which is
B =
B= strength of magnetic field
I =current on conductor
r = distance on any point of the conductor relative to it center
If a current carrying could generate this magnitude of magnetic field, thus this magnetic field has the ability to interact (exert a force on any magnetic material) with any other magnetic material including a magnet.
Yes, a current carrying conductor can exert a force on a magnetic field
Answer:
L = L0 (1 + c T) where c is the coefficient and T the change in temperature
L = 50 ( 1 + 2.05E-6 * 50) = 50.0051 cm
Sunspot. Sunspots are temporary cooler areas on the Sun's surface caused by changes in its magnetic field.
Answer:
1.6 m/s
Explanation:
First you need to find the momentums of each disc by multiplying their velocities with mass.
disc 1: 7*1= 7 kg m/s
disc 2: 1*9= 9 kg m/s
Second, you need to find the total momentum of the system by adding the momentums of each sphere.
9+7= 16 kg m/s
Because momentum is conserved, this is equal to the momentum of the composite body.
Finally, to find the composite body's velocity, divide its total momentum by its mass. This is because mass*velocity=momentum
16/10=1.6
The velocity of the composite body is 1.6 m/s.
Answer:
Mercury is a bad conductor of heat but a fair conductor of electricity
By the way PURE SILVER is the best conductor of electricity
Please Mark as brainliest