Answer:
d = 68.5 x 10⁻⁶ m = 68.5 μm
Explanation:
The complete question is as follows:
An optical engineer needs to ensure that the bright fringes from a double-slit are 15.7 mm apart on a detector that is 1.70m from the slits. If the slits are illuminated with coherent light of wavelength 633 nm, how far apart should the slits be?
The answer can be given by using the formula derived from Young's Double Slit Experiment:

where,
d = slit separation = ?
λ = wavelength = 633 nm = 6.33 x 10⁻⁷ m
L = distance from screen (detector) = 1.7 m
y = distance between bright fringes = 15.7 mm = 0.0157 m
Therefore,

<u>d = 68.5 x 10⁻⁶ m = 68.5 μm</u>
A. a tsunami
(if the earthquake is hitting the ocean, the water will get effected)
Explanation:
Given that,
Initial speed of the bus, u = 0
Acceleration of the bus, a = 0.5 m/s²
Let v is the velocity at the end of 2 minutes. The change in velocity divided by time equals acceleration.
So,

Let d is the distance cover during that time. So,

So, the final speed is 60 m/s and the distance covered during that time is 3600 m.
C because it’s not a or B so 50/50 c or d and d is def not the answer so c
Answer:
Explanation:
We have here values from SI and English Units. I will convert the units to English Units.
We hace for the power P,


we have other values such
and
(specific weight of the water), and 0.85 for \eta
We need to figure the flow rate of the water (V) out, that is,

Where
is the turbine efficiency, at which is,

Replacing,


With this value (the target of this question) we can also calculate the mass flow rate of the waters,
through the density and the flow rate,

converting the slugs to lbm, 1slug = 32.174lbm, we have that the mass flow rate of the water is,
