Answer:
C. <em>c</em> is less than zero
Step-by-step explanation:
The parent radical function y=x^(1/n) has its point of inflection at the origin. The graph shows that point of inflection has been translated left and down.
<h3>Function transformation</h3>
The transformation of the parent function y=x^(1/n) into the function ...
f(x) = a(x +k)^(1/n) +c
represents the following transformations:
- vertical scaling by a factor of 'a'
- left shift by k units
- up shift by c units
<h3>Application</h3>
The location of the inflection point at (-3, -4) indicates it has been shifted left 3 units, and down 4 units. In the transformed function equation, this means ...
The graph says the value of c is less than zero.
__
<em>Additional comment</em>
Apparently, the value of 'a' is 2, and the value of n is 3. The equation of the graph seems to be ...
f(x) = 2(x +3)^(1/3) -4
Answer:
-9 < x
Step-by-step explanation:
-3x - 7 < 20
+ 7 + 7
___________
-3x < 27
___ ___
-3 -3
x > -9 [Whenever you <em>divide</em><em> </em>or <em>multiply</em><em> </em>by a negative, reverse the inequality symbol.]
The above answer is written in reverse, which is the exact same result.
I am joyous to assist you anytime.
Answer:
We accept H₀ with the information we have, we can say level of ozone is under the major limit
Step-by-step explanation:
Normal Distribution
population mean = μ₀ = 7.5 ppm
Sample size n = 16 df = n - 1 df = 15
Sample mean = μ = 7.8 ppm
Sample standard deviation = s = 0.8
We want to find out if ozono level, is above normal level that is bigger than 7.5
1.- Hypothesis Test
null hypothesis H₀ μ₀ = 7.5
alternative hypothesis Hₐ μ₀ > 7.5
2.-Significance level α = 0.01 we will develop one tail-test (right)
then for df = 15 and α = 0,01 from t -student table we get
t(c) = 2.624
3.-Compute t(s)
t(s) = ( μ - μ₀ ) / s /√n ⇒ t(s) = ( 7.8 - 7.5 )*4/0.8
t(s) = 0.3*4/0.8
t(s) = 1.5
4.-Compare t(s) and t(c)
t(s) < t(c) 1.5 < 2.64
Then t(s) is inside the acceptance region. We accept H₀
Answer:
182.41
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

40th percentile
Value of X when Z has a pvalue of 0.4. So X when Z = -0.253.




So the answer is 182.41.