An arrow which shows the direction that the probe should be moving in order for it to enter the orbit is X.
<h3>What is an orbit?</h3>
An orbit can be defined as the curved path through which a astronomical (celestial) object such as planet Earth, in space move around a Moon, Sun, planet or star.
In this scenario, if the scientists want the probe to enter the orbit they should ensure that probe moves in direction X. This ultimately implies that, the probe must move in the same direction as the orbit, in order to enter it.
Read more on orbit here: brainly.com/question/18496962
#SPJ1
Ocean bulges on Earth would be bigger if the Moon had twice as much mass and yet orbited the planet at the same distance. Option B is correct.
<h3>What is ocean bludge?</h3>
The fluid and moveable ocean water are drawn towards the moon by the gravitational attraction between the moon and the Earth.
The ocean nearest to the moon experiences a bulge as a result, and as the Earth rotates, the affected seas' locations shift.
The Moon's bulges in the oceans would be larger if it had twice the mass and orbited Earth at the same distance.
Hence option B is corect.
To learn more about the ocean bulge refer;
brainly.com/question/14373016
#SPJ1
A star is located 5.9 light years from Earth.
We know that : 1 light year = 9.46 trillion kilometers.
We will calculate the distance in trillion kilometers multiplying the number of light years by 9.46:
5.9 * 9.46 = 55.814
Answer: The distance is 55.814 trillion km.
Answer: 1. The field energy will increase
2. The energy increases, and the lines of force are denser
3. It points toward the field of earths magnetic poles
4. 1 and 2 only
5. 2, 4, 1, 3
Explanation: just took it
Answer:
yes
Explanation:
this is simple
the horizontal line is adjacent
the vertical line is opposite
recall that cos x=adj/hyp
adj=hyp(cos x)
while opp=hyp(sin x)