1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Step2247 [10]
3 years ago
8

Evaporation of sweat requires energy and thus take excess heat away from the body. Some of the water that you drink may eventual

ly be converted into sweat and evaporate. If you drink a 20.0-ounce bottle of water that had been in the refrigerator at 3.8 °C, how much heat is needed to convert all of that water into sweat , knowing 1ml contains 0.03 ounces? (Note: Your body temperature is 36.6 °C. For the purpose of solving this problem, assume that the thermal properties of sweat are the same as for water.)
Physics
1 answer:
kotegsom [21]3 years ago
4 0

Answer:

The amount of heat required is H_t =  1.37 *10^{6} \ J

Explanation:

From the question we are told that

The mass of water is m_w  =  20 \ ounce = 20 * 28.3495 = 5.7 *10^2 g

The temperature of the water before drinking is T_w  =  3.8 ^oC

The temperature of the body is T_b  =  36.6^oC

Generally the amount of heat required to move the water from its former temperature to the body temperature is

H=  m_w  *  c_w * \Delta T

Here c_w is the specific heat of water with value c_w = 4.18 J/g^oC

So

H=   5.7 *10^2 * 4.18 * (36.6 - 3.8)

=> H= 7.8 *10^{4} \  J

Generally the no of mole of sweat present mass of water is

n = \frac{m_w}{Z_s}

Here Z_w is the molar mass of sweat with value

Z_w =  18.015 g/mol

=> n = \frac{5.7 *10^2}{18.015}

=> n = 31.6 \  moles

Generally the heat required to vaporize the number of moles of the sweat is mathematically represented as

H_v  =  n  *  L_v

Here L_v is the latent heat of vaporization with value L_v  = 7 *10^{3} J/mol

=> H_v  =  31.6 * 7 *10^{3}

=> H_v  = 1.29 *10^{6} \  J

Generally the overall amount of heat energy required is

H_t =  H +  H_v

=> H_t =  7.8 *10^{4} +  1.29 *10^{6}

=> H_t =  1.37 *10^{6} \ J

You might be interested in
Which statement about stage 3 NREM is accurate?
cestrela7 [59]

Answer:

hope

that helps

Explanation:

D. The sleeper's heart rate, blood pressure, and breathing rate drop to their lowest levels.

8 0
3 years ago
There are competitions in which pilots fly small planes low over the ground and drop weights, trying to hit a target. A pilot fl
nikdorinn [45]

Answer:

Also 3s.

Explanation:

Each component is independent in two dimensional motion. This means that <em>how much time does something take to reach the ground when dropped is independent from any horizontal velocity</em>. If at one run a drop lasts 3s, at another run with twice the (horizontal) velocity and same height will also last 3s, no matter what.

8 0
3 years ago
g If this combination of resistors were to be replaced by a single resistor with an equivalent resistance, what should that resi
Anettt [7]
<h2>Question:</h2>

In this circuit the resistance R1 is 3Ω, R2 is 7Ω, and R3 is 7Ω. If this combination of resistors were to be replaced by a single resistor with an equivalent resistance, what should that resistance be?

Answer:

9.1Ω

Explanation:

The circuit diagram has been attached to this response.

(i) From the diagram, resistors R1 and R2 are connected in parallel to each other. The reciprocal of their equivalent resistance, say Rₓ, is the sum of the reciprocals of the resistances of each of them. i.e

\frac{1}{R_X} = \frac{1}{R_1} + \frac{1}{R_2}

=> R_{X} = \frac{R_1 * R_2}{R_1 + R_2}             ------------(i)

From the question;

R1 = 3Ω,

R2 = 7Ω

Substitute these values into equation (i) as follows;

R_{X} = \frac{3 * 7}{3 + 7}

R_{X} = \frac{21}{10}

R_{X} = 2.1Ω

(ii) Now, since we have found the equivalent resistance (Rₓ) of R1 and R2, this resistance (Rₓ) is in series with the third resistor. i.e Rₓ and R3 are connected in series. This is shown in the second image attached to this response.

Because these resistors are connected in series, they can be replaced by a single resistor with an equivalent resistance R. Where R is the sum of the resistances of the two resistors: Rₓ and R3. i.e

R = Rₓ + R3

Rₓ = 2.1Ω

R3 = 7Ω

=> R = 2.1Ω + 7Ω = 9.1Ω

Therefore, the combination of the resistors R1, R2 and R3 can be replaced with a single resistor with an equivalent resistance of 9.1Ω

4 0
3 years ago
50 POINTS
sweet-ann [11.9K]

Answer:

The acceleration is constant and positive

Explanation:

The straight line indicates that the acceleration is constant, while the positive slope indicates that the line is positive.

7 0
3 years ago
Read 2 more answers
Which color has the lowest frequency?
Svet_ta [14]
<h2>RED!</h2><h3></h3><h3>On the visible spectrum, red has the lowest frequency.</h3><h3>(I'm an amateur astronomer, so I would know.)</h3>
4 0
3 years ago
Other questions:
  • Assume you are a perfect blackbody at a temperature of T = 310 K. What is the rate, in watts, at which you radiate energy? (For
    13·1 answer
  • Electrons are important to electric current because they are able to__________.
    11·2 answers
  • What is the wavelength of a wave if the wave speed is 24 m/s and the frequency is 48 Hz?
    11·2 answers
  • 1.
    13·1 answer
  • A planet has two moons with identical mass. Moon 1 is in a circular orbit of radius r. Moon 2 is in a circular orbit of radius 2
    11·1 answer
  • The heater element of a particular 120-V toaster is a 8.9-m length of nichrome wire, whose diameter is 0.86 mm. The resistivity
    5·1 answer
  • A bucket is filled partly with water such that its combined mass is 2.5 kg. It is tied to a rope and whirled in a circle with a
    5·1 answer
  • You are trying to gain possession of the soccer ball. What position are you playing?
    7·1 answer
  • Un cuerpo se mueve, partiendo del reposo, con una aceleración constante de 8 m/s². Calcular la velocidad que tiene al cabo de 5s
    10·1 answer
  • For each of the following scenarios, describe the force providing the centripetal force for the motion: (Be very specific, and g
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!