1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marysya12 [62]
3 years ago
15

Need help finding the average speed.

Physics
1 answer:
Snowcat [4.5K]3 years ago
5 0

Explanation:

To find the average of these numbers, we just have to add the three numbers together and divide by 3.

  • 2.07 + 0. 74 + 1.33 = 4.14. 4.14 / 3 = 1.38
  • 1.09 + 1.40 + 0.31 = 2.8. 2.8 / 3 ≈ 9.3333333/ 9 1/3
  • 0.95 + 1.61 + 0.56 = 3.12 / 3 = 1.04
  • 0.81 + 1.89 + 1.08 = 3.78 / 3 = 1.26
You might be interested in
A soccer ball is kicked from the top of one building with a height of H1 = 30.2 m to another building with a height of H2 = 12.0
viktelen [127]

Hi there!

Initially, we have gravitational potential energy and kinetic energy. If we set the zero-line at H2 (12.0m), then the ball at the second building only has kinetic energy.

We also know there was work done on the ball by air resistance that decreased the ball's total energy.

Let's do a summation using the equations:
KE = \frac{1}{2}mv^2 \\\\PE = mgh

Our initial energy consists of both kinetic and potential energy (relative to the final height of the ball)

E_i = \frac{1}{2}mv_i^2 + mg(H_1 - H_2)

Our final energy, since we set the zero-line to be at H2, is just kinetic energy.

E_f = \frac{1}{2}mv_f^2

And:
W_A = E_i - E_f

The work done by air resistance is equal to the difference between the initial energy and the final energy of the soccer ball.

Therefore:
W_A = \frac{1}{2}mv_i^2 + mg(H_1 - H_2) -  \frac{1}{2}mv_f^2

Solving for the work done by air resistance:
W_A = \frac{1}{2}(.450)(15.1^2)+ (.450)(9.8)(30.2 - 12) -  \frac{1}{2}(.450)(19.89^2)

W_A = \boxed{42.552 J}

8 0
2 years ago
6)An electric field of 6 N/C points in the positive X direction. What is the electric flux through a surface that is 4 m2, if it
Salsk061 [2.6K]

Answer:

Flux is 21 Nm^2/C.

Explanation:

Electric field, E = 6 N/C along X axis

Electric filed vector, E = 6 i N/C

Area, A = 4 square meter

Area vector

\overrightarrow{A} = 4 (cos30 \widehat{i} + sin 30 \widehat{j})\\\\\overrightarrow{A} = 3.5 \widehat{i} + 2 \widehat{j}\\

The flux is given by

\phi= \overrightarrow{E}.\overrightarrow{A}\\\\\phi = 6 \widehat{i} .  \left (3.5 \widehat{i} + 2 \widehat{j}  \right )\\\\\phi = 21 Nm^2/C

3 0
2 years ago
A 100-kg spacecraft is in a circular orbit about Earth at a height h = 2RE .
maria [59]

To solve this problem it is necessary to apply the concepts related to the conservation of the Gravitational Force and the centripetal force by equilibrium,

F_g = F_c

\frac{GmM}{r^2} = \frac{mv^2}{r}

Where,

m = Mass of spacecraft

M = Mass of Earth

r = Radius (Orbit)

G = Gravitational Universal Music

v = Velocity

Re-arrange to find the velocity

\frac{GM}{r^2} = \frac{v^2}{r}

\frac{GM}{r} = v^2

v = \sqrt{\frac{GM}{r}}

PART A ) The radius of the spacecraft's orbit is 2 times the radius of the earth, that is, considering the center of the earth, the spacecraft is 3 times at that distance. Replacing then,

v = \sqrt{\frac{(6.67*10^{-11})(5.97*10^{24})}{3*(6.371*10^6)}}

v = 4564.42m/s

From the speed it is possible to use find the formula, so

T = \frac{2\pi r}{v}

T = \frac{2\pi (6.371*10^6)}{4564.42}

T = 8770.05s\approx 146min\approx 2.4hour

Therefore the orbital period of the spacecraft is 2 hours and 24 minutes.

PART B) To find the kinetic energy we simply apply the definition of kinetic energy on the ship, which is

KE = \frac{1}{2} mv^2

KE = \frac{1}{2} (100)(4564.42)^2

KE = 1.0416*10^9J

Therefore the kinetic energy of the Spacecraft is 1.04 Gigajules.

8 0
2 years ago
What is the net force on the purple ring in the picture below. _________
Setler79 [48]
The dogs i think haha
5 0
2 years ago
Consider an alien on a planet with an acceleration of gravity equal to 20 m/sec^2. If the alien's mass is 10 kg, how much does t
mr_godi [17]

Answer:

the weight of alien is 200 newtons

Explanation:

The computation of the alien weight is shown below:

Given that

Acceleration = 20m/sec^2

And, the mass is 10 kg

So, the weight of alien is

= 20 × 10

= 200 newtons

hence, the weight of alien is 200 newtons

6 0
2 years ago
Other questions:
  • what is newton's second law of motion? forces are balanced when they are equal and opposite. an object at rest or in motion will
    9·2 answers
  • A certain string can withstand a maximum tension of 39. N without breaking. A child ties a 0.43 kg stone to one end and, holding
    10·1 answer
  • The distance from one compression in a sound wave to the next compression is defined as the __________.
    10·1 answer
  • 1. What is the pressure caused on the ground by an elephant of weight 20000N
    6·1 answer
  • Question 8: Unspooling Thread (100 points) A 110 g spool of thread with a 4.2 cm radius is held up by a peg through its center a
    13·1 answer
  • The initial momentum of a system is measured at 300 kg•m/s. Afterwards, the
    10·1 answer
  • What is the medium of the wave shown in the photograph?
    8·2 answers
  • Difference between kinetic energy and potential energy(please i need answer in 2minutes​
    8·1 answer
  • True or false: Displacement is the total path traveled by an object
    13·1 answer
  • What causes the amount of gravitational force to change?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!