Answer:
3A
Explanation:
Using Ohms law U=I×R solve for I by I=U/R
Answer:
theoretical fracture strength = 16919.98 MPa
Explanation:
given data
Length (L) = 0.28 mm = 0.28 × 10⁻³ m
radius of curvature (r) = 0.002 mm = 0.002 × 10⁻³ m
Stress (s₀) = 1430 MPa = 1430 × 10⁶ Pa
solution
we get here theoretical fracture strength s that is express as
theoretical fracture strength =
.............................1
put here value and we get
theoretical fracture strength =
theoretical fracture strength =
theoretical fracture strength = 16919.98 MPa
This statement is b which is true: hope this helped
Answer:
a)
, b)
Explanation:
a) The Reynolds number for the water flowing in a circular tube is:

Let assume that density and dynamic viscosity at 25 °C are
, respectively. Then:


b) The result is:

Answer:
$916
Explanation:
To solve this, we use the formula
FV = P/i * [(1+i)^n - 1], where
FV = future value of the all the money invested, $5 million
n = time span, = 500 months
P = payment per month
I = interest rate, 9% by 12 months, = 0.0075
Considering that we have been given all in our question, then we substitute directly and solve. So we have,
5000000 = P/0.0075 * [(1+0.0075)^500 -1]
5000000 * 0.0075 = P * [1.0075^500 - 1]
37500 = P * [41.93 - 1]
37500 = P * 40.93
P = 37500/40.93
P = $916.20
Therefore, the engineer needs to save $916 in a month which is the accrued