Answer:
a) The Net power developed in this air-standard Brayton cycle is 43.8MW
b) The rate of heat addition in the combustor is 84.2MW
c) The thermal efficiency of the cycle is 52%
Explanation:
To solve this cycle we need to determinate the enthalpy of each work point of it. If we consider the cycle starts in 1, the air is compressed until 2, is heated until 3 and go throw the turbine until 4.
Considering this:
![h_{i} =T_{i}C_{pair}=T_{i}1.005\frac{KJ}{Kg K}](https://tex.z-dn.net/?f=h_%7Bi%7D%20%3DT_%7Bi%7DC_%7Bpair%7D%3DT_%7Bi%7D1.005%5Cfrac%7BKJ%7D%7BKg%20K%7D)
![\mu_{comp}=\frac{h_{2S}-h_{1}}{h_{2}-h_{1}}](https://tex.z-dn.net/?f=%5Cmu_%7Bcomp%7D%3D%5Cfrac%7Bh_%7B2S%7D-h_%7B1%7D%7D%7Bh_%7B2%7D-h_%7B1%7D%7D)
![\mu_{comp}=\frac{h_{3}-h_{4}}{h_{3}-h_{4S}}](https://tex.z-dn.net/?f=%5Cmu_%7Bcomp%7D%3D%5Cfrac%7Bh_%7B3%7D-h_%7B4%7D%7D%7Bh_%7B3%7D-h_%7B4S%7D%7D)
![G_{m} =\frac{PMG_{v}}{TR} =59.73\frac{Kg}{s}](https://tex.z-dn.net/?f=G_%7Bm%7D%20%3D%5Cfrac%7BPMG_%7Bv%7D%7D%7BTR%7D%20%3D59.73%5Cfrac%7BKg%7D%7Bs%7D)
Now we can calculate the enthalpy of each work point:
h₁=281.4KJ/Kg
h₂=695.41KJ/Kg
h₃=2105KJ/Kg
h₄=957.14KJ/Kg
The net power developed:
![P_{net}=P_{Tur}-P_{Comp}=G_{m}((h_{3}-h_{4})-(h_{2}-h_{1}))](https://tex.z-dn.net/?f=P_%7Bnet%7D%3DP_%7BTur%7D-P_%7BComp%7D%3DG_%7Bm%7D%28%28h_%7B3%7D-h_%7B4%7D%29-%28h_%7B2%7D-h_%7B1%7D%29%29)
The rate of heat:
![Q=G_{m}(h_{3}-h_{2})](https://tex.z-dn.net/?f=Q%3DG_%7Bm%7D%28h_%7B3%7D-h_%7B2%7D%29)
The thermal efficiency:
![\mu_{ther}=\frac{P_{net}}{Q}](https://tex.z-dn.net/?f=%5Cmu_%7Bther%7D%3D%5Cfrac%7BP_%7Bnet%7D%7D%7BQ%7D)
Answer:
![\dot L_{steel} = 3.448\times 10^{-4}\,\frac{in}{min}](https://tex.z-dn.net/?f=%5Cdot%20L_%7Bsteel%7D%20%3D%203.448%5Ctimes%2010%5E%7B-4%7D%5C%2C%5Cfrac%7Bin%7D%7Bmin%7D)
Explanation:
The Young's module is:
![E = \frac{\sigma}{\frac{\Delta L}{L_{o}} }](https://tex.z-dn.net/?f=E%20%3D%20%5Cfrac%7B%5Csigma%7D%7B%5Cfrac%7B%5CDelta%20L%7D%7BL_%7Bo%7D%7D%20%7D)
![E = \frac{\sigma\cdot L_{o}}{\dot L \cdot \Delta t}](https://tex.z-dn.net/?f=E%20%3D%20%5Cfrac%7B%5Csigma%5Ccdot%20L_%7Bo%7D%7D%7B%5Cdot%20L%20%5Ccdot%20%5CDelta%20t%7D)
Let assume that both specimens have the same geometry and load rate. Then:
![E_{aluminium} \cdot \dot L_{aluminium} = E_{steel} \cdot \dot L_{steel}](https://tex.z-dn.net/?f=E_%7Baluminium%7D%20%5Ccdot%20%5Cdot%20L_%7Baluminium%7D%20%3D%20E_%7Bsteel%7D%20%5Ccdot%20%5Cdot%20L_%7Bsteel%7D)
The displacement rate for steel is:
![\dot L_{steel} = \frac{E_{aluminium}}{E_{steel}}\cdot \dot L_{aluminium}](https://tex.z-dn.net/?f=%5Cdot%20L_%7Bsteel%7D%20%3D%20%5Cfrac%7BE_%7Baluminium%7D%7D%7BE_%7Bsteel%7D%7D%5Ccdot%20%5Cdot%20L_%7Baluminium%7D)
![\dot L_{steel} = \left(\frac{10000\,ksi}{29000\,ksi}\right)\cdot (0.001\,\frac{in}{min} )](https://tex.z-dn.net/?f=%5Cdot%20L_%7Bsteel%7D%20%3D%20%5Cleft%28%5Cfrac%7B10000%5C%2Cksi%7D%7B29000%5C%2Cksi%7D%5Cright%29%5Ccdot%20%280.001%5C%2C%5Cfrac%7Bin%7D%7Bmin%7D%20%29)
![\dot L_{steel} = 3.448\times 10^{-4}\,\frac{in}{min}](https://tex.z-dn.net/?f=%5Cdot%20L_%7Bsteel%7D%20%3D%203.448%5Ctimes%2010%5E%7B-4%7D%5C%2C%5Cfrac%7Bin%7D%7Bmin%7D)
Answer:
Check the explanation
Explanation:
Kindly check the attached images below to see the step by step explanation to the question above.
The answer is deindividuation - a psychological state in which a person does not feel individual responsibility.
Answer:
maximum value of the power delivered to the circuit =3.75W
energy delivered to the element = 3750e^{ -IOOOt} - 7000e ^{-2OOOt} -3750
Explanation:
V =75 - 75e-1000t V
l = 50e -IOOOt mA
power = IV = 50 * 10^-3 e -IOOOt * (75 - 75e-1000t)
=50 * 10^-3 e -IOOOt *75 (1 - e-1000t)
=
maximum value of the power delivered to the circuit =3.75W
the total energy delivered to the element = ![\int\limits^t_0 {3.75(e^{ -IOOOt} - e ^{-2OOOt} )} , dx \\\\](https://tex.z-dn.net/?f=%5Cint%5Climits%5Et_0%20%20%7B3.75%28e%5E%7B%20-IOOOt%7D%20-%20e%20%5E%7B-2OOOt%7D%20%29%7D%20%2C%20dx%20%5C%5C%5C%5C)
![3750e^{ -IOOOt} - 7000e ^{-2OOOt} -3750](https://tex.z-dn.net/?f=3750e%5E%7B%20-IOOOt%7D%20-%207000e%20%5E%7B-2OOOt%7D%20-3750)