1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svp [43]
3 years ago
14

Developed an automated program in any language which take 12 dependent variable and corresponding independent variables and show

the output of least square regression in a form of relations.
Engineering
1 answer:
otez555 [7]3 years ago
3 0

Answer:

Explanation:

var generator = new Random(1);

// Now the nextGaussian() function returns a normal distribution of random numbers with the following parameters: a mean of zero and a standard deviation of one

var draw = function() {

var num = generator.nextGaussian();

var standardDeviation = 60;

var mean = 2003;

// Multiply by the standard deviation and add the mean.

var x = standardDeviation * num + mean;

noStroke();

fill(214, 159, 214, 10);

ellipse(x, 200, 16, 16); };

Hope this will be helpful

You might be interested in
The dam cross section is an equilateral triangle, with a side length, L, of 50 m. Its width into the paper, b, is 100 m. The dam
lisabon 2012 [21]

Answer:

Explanation:

In an equilateral trinagle the center of mass is at 1/3 of the height and horizontally centered.

We can consider that the weigth applies a torque of T = W*b/2 on the right corner, being W the weight and b the base of the triangle.

The weigth depends on the size and specific gravity.

W = 1/2 * b * h * L * SG

Then

Teq = 1/2 * b * h * L * SG * b / 2

Teq = 1/4 * b^2 * h * L * SG

The water would apply a torque of elements of pressure integrated over the area and multiplied by the height at which they are apllied:

T1 = \int\limits^h_0 {p(y) * sin(30) * L * (h-y)} \, dy

The term sin(30) is because of the slope of the wall

The pressure of water is:

p(y) = SGw * (h - y)

Then:

T1 = \int\limits^h_0 {SGw * (h-y) * sin(30) * L * (h-y)} \, dy

T1 = \int\limits^h_0 {SGw * sin(30) * L * (h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {(h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {(h-y)^2} \, dy

T1 = SGw * sin(30) * L * \int\limits^h_0 {h^2 - 2*h*y + y^2} \, dy

T1 = SGw * sin(30) * L * (h^2*y - h*y^2 + 1/3*y^3)(evaluated between 0 and h)

T1 = SGw * sin(30) * L * (h^2*h - h*h^2 + 1/3*h^3)

T1 = SGw * sin(30) * L * (h^3 - h^3 + 1/3*h^3)

T1 = 1/3 * SGw * sin(30) * L * h^3

To remain stable the equilibrant torque (Teq) must be of larger magnitude than the water pressure torque (T1)

1/4 * b^2 * h * L * SG > 1/3 * SGw * sin(30) * L * h^3

In an equilateral triangle h = b * cos(30)

1/4 * b^3 * cos(30) * L * SG  > 1/3 * SGw * sin(30) * L * b^3 * (cos(30))^3

SG > SGw * 4/3* sin(30) * (cos(30))^2

SG > 1/2 * SGw

For the dam to hold, it should have a specific gravity of at leas half the specific gravity of water.

This is avergae specific gravity, including holes.

6 0
3 years ago
Calculate the rate at which body heat is conducted through the clothing of a skier in a steady- state process, given the followi
olga2289 [7]

Answer:

230.4W

Explanation:

Heat transfer by conduction consists of the transport of energy in the form of heat through solids, in this case a jacket.

the equation is as follows

Q=\frac{KA(T2-T1)}{L} \\

Where

Q=heat

k=conductivity=0.04

A=Area=1.8m^2

T2=33C

T1=1C

L=thickness=1cm=0.01mQ=\frac{(0.04)(1.8m^2)(33-1)}{0.01m}

Q=230.4W

the skier loses heat at the rate of 230.4W

4 0
3 years ago
The question belongs to Electrical Engineering (Linear System).
-Dominant- [34]
I’m crying looking at that.
5 0
3 years ago
Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The w
Dafna11 [192]

Answer:

\mathbf{h_2 =1021.9 \  mm}

Explanation:

Given that :

The initial volume of water V_1 = 1000.00 mL = 1000000 mm³

The initial temperature of the water  T_1 = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water T_2 = 70° C

The coefficient of thermal expansion for the glass is  ∝ = 3.8*10^{-6 } mm/mm  \ per ^oC

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature T_1 = 10 ^ 0C  the density of the water is \rho = 999.7 \ kg/m^3

At temperature T_2 = 70^0 C  the density of the water is \rho = 977.8 \ kg/m^3

The mass of the water is  \rho V = \rho _1 V_1 = \rho _2 V_2

Thus; we can say \rho _1 V_1 = \rho _2 V_2;

⇒ 999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2

V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }

V_2 = 1022.40 \ mL

v_2 = 1022400 \ mm^3

Thus, the volume of the water after heating to a required temperature of  70^0C is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

V_1 = A_1 *h_1

The area of the water before heating is:

A_1 = \dfrac{V_1}{h_1}

A_1 = \dfrac{1000000}{1000}

A_1 = 1000 \ mm^2

The area of the heated water is :

A_2 = A_1 (1  + \Delta t  \alpha )^2

A_2 = A_1 (1  + (T_2-T_1) \alpha )^2

A_2 = 1000 (1  + (70-10) 3.8*10^{-6} )^2

A_2 = 1000.5 \ mm^2

Finally, the depth of the heated hot water is:

h_2 = \dfrac{V_2}{A_2}

h_2 = \dfrac{1022400}{1000.5}

\mathbf{h_2 =1021.9 \  mm}

Hence the depth of the heated hot  water is \mathbf{h_2 =1021.9 \  mm}

4 0
3 years ago
Define the word vision statement​
Elena L [17]

Answer:

A vision statement describes what a company desires to achieve in the long-run, generally in a time frame of five to ten years, or sometimes even longer. It depicts a vision of what the company will look like in the future and sets a defined direction for the planning and execution of corporate-level strategies.

Explanation:

While companies should not be too ambitious in defining their long-term goals, it is critical to set a bigger and further target in a vision statement that communicates a company’s aspirations and motivates the audience. Below are the main elements of an effective vision statement:

-Forward-looking

-Motivating and inspirational

-Reflective of a company’s culture and core values

-Aimed at bringing benefits and improvements to the organization in the future

-Defines a company’s reason for existence and where it is heading

7 0
3 years ago
Other questions:
  • Which of the following is an activity of daily living? jogging cleaning weightlifting all of the above
    13·1 answer
  • Design a PI controller to improve the steady-state error. The system should operate with a damping ratio of 0.8. Compute the ove
    10·1 answer
  • Is it possible to interface an IC with a different technology such as TTL to HCS12 ports? What are the conditions in terms of el
    10·1 answer
  • A heat pump with refrigerant-134a as the working fluid is used to keep a space at 25°C by absorbing heat from geothermal water t
    8·1 answer
  • A 250 kilo ohms and a 750 kilo ohms resistor are connected in series across a 75-volt source. Determine the error in measuring t
    10·1 answer
  • The W16x50, steel beam below has a span of 26' and is subjected to a 2.3 k/ft uniform distributed loading. If a 8 kip load is al
    8·1 answer
  • IF A CAR AHEAD OF YOU HAS STOPPED AT A CROSSWALK, YOU SHOULD:
    12·1 answer
  • ILL GIVE BRAINLIEST!!!
    11·1 answer
  • Basic C++ For Loop I'm trying to learn. Replit tells me that the for in the forloop is an error, but I don't know what's wrong.
    7·1 answer
  • I want to know if anyone else know how to tell apart real leather from fake leather?!?!
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!