D i took this hope it helps
An isometrical drawing is a nearly 3d drawing showing the object's width and depth in a complete image, from each curved plane of the orthhographic view, the viewpoint is at a 45 degree angle. From an observations point of view, isometric differs, since all longitudes are true.
Answer:
Magnitude of force P = 25715.1517 N
Explanation:
Given - The wires each have a diameter of 12 mm, length of 0.6 m, and are made from 304 stainless steel.
To find - Determine the magnitude of force P so that the rigid beam tilts 0.015∘.
Proof -
Given that,
Diameter = 12 mm = 0.012 m
Length = 0.6 m
= 0.015°
Youngs modulus of elasticity of 34 stainless steel is 193 GPa
Now,
By applying the conditions of equilibrium, we have
∑fₓ = 0, ∑
= 0, ∑M = 0
If ∑
= 0
⇒
×0.9 - P × 0.6 = 0
⇒
×3 - P × 2 = 0
⇒
= 
If ∑
= 0
⇒
×0.9 = P × 0.3
⇒
×3 = P
⇒
= 
Now,
Area, A =
= 1.3097 × 10⁻⁴ m²
We know that,
Change in Length ,
= 
Now,
= 9.1626 × 10⁻⁹ P
= 1.83253 × 10⁻⁸ P
Given that,
= 0.015°
⇒
= 2.618 × 10⁻⁴ rad
So,

⇒2.618 × 10⁻⁴ = ( 1.83253 × 10⁻⁸ P - 9.1626 × 10⁻⁹ P) / 0.9
⇒P = 25715.1517 N
∴ we get
Magnitude of force P = 25715.1517 N
Answer:
The correct answer is option 'a': 0.046 meters.
Explanation:
We know that the exit velocity of a jet of water is given by Torricelli's law as

where
'v' is velocity of head
'g' is acceleration due to gravity
'h' is the head under which the jet falls
Now since the jet rises to a head of 90 meters above ground thus from conservation of energy principle it must have fallen through a head of 90 meters.
Applying the values in above equation we get the exit velocity as

now we know the relation between discharge and velocity as dictated by contuinity equation is

Applying values in the above equation and solving for area we get

The circular area is related to diameter as

Thus the diameter of the nozzle is 0.246 meters