1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BabaBlast [244]
3 years ago
9

An inventor claims to have developed a power cycle operating between hot and cold reservoirs at 1175 K and 295 K, respectively,

that provides a steady-state power output of (a) 28 kW, (b) 31.2 kW, while receiving energy by heat transfer from the hot reservoir at the rate 150,000 kJ/h. Evaluate each claim
Engineering
1 answer:
Alinara [238K]3 years ago
4 0

Answer:

<em>a) efficiency is equal to 67.2%, and this is lesser than the maximum obtainable efficiency, so this power output is possible.</em>

<em>b) efficiency is 75%, this is approximately equal to the maximum obtainable efficiency, but not more that it. This power output is also possible.</em>

<em></em>

Explanation:

Cold reservoir temperature Tc = 295 K

Hot reservoir temperature Th = 1175 K

Energy input Q = 150000 K/h

Converting to kJ/s, Q  = 150000/3600 = 41.66 kJ/s

Maximum efficiency that can be obtained from this cycle = 1 - \frac{Tc}{Th}

==> 1 - \frac{295}{1175} = 0.748 ≅ 75%

also recall that actual cycle efficiency = \frac{W}{Q}

Where W is the energy output or work

a) for work of 28 kW,

eff =  \frac{W}{Q} =  \frac{28}{41.66} = 0.672 ≅ 67.2%

this is lesser than the maximum obtainable efficiency, so this power output is possible.

b) for work of 31.2 kW

eff =  \frac{W}{Q} =  \frac{31.2}{41.66} = 0.748 ≅ 75%

this is approximately equal to the maximum obtainable efficiency, but not more that it. This power output is possible.

NB: kW is also equal to kJ/S

You might be interested in
The fan blades suddenly experience an angular acceleration of 2 rad/s2. If the blades are rotating with an initial angular veloc
madreJ [45]

Answer:

Option B

116 ft/s^{2}

Explanation:

\theta=2 rev=2(2\pi)=4\pi

\alpha \theta=0.5(\omega_f^{2}-\omega_i^{2})

\alpha (4\pi)= 0.5(\omega_f^{2}-\omega_i^{2})

\alpha (8\pi)= (\omega_f^{2}-\omega_i^{2})

(2) (8\pi)= (\omega_f^{2}-\omega_i^{2})

(2) (8\pi)= (\omega_f^{2}-4^{2})

\omega_f=8.14 rads/s

v=r\omega=1.75*8.14=14.245 ft/s

Centripetal acceleration =\omega_f^{2} r=8.14^{2}*1.75=115.95 ft/s^{2}

Tangential component=dr=2*1.75=3.5

Resultant=\sqrt{3.5^{2}+115.95^{2}}\approx 116 ft/s^{2}

5 0
3 years ago
In details and step-by-step, show how you apply the Bubble Sort algorithm on the following list of values. Your answer should sh
astraxan [27]

( 12 17 18 19 25 )

<u>Explanation:</u>

<u>First Pass:</u>

( 19 18 25 17 12 ) –> ( 18 19 25 17 12 ), Here, algorithm compares the first two elements, and swaps since 19 > 18.

( 18 19 25 17 12 ) –> ( 18 19 25 17 12 ), Now, since these elements are already in order (25 > 19), algorithm does not swap them.

( 18 19 25 17 12 ) –> ( 18 19 17 25 12 ), Swap since 25 > 17

( 18 19 17 25 12 ) –> ( 18 19 17 12 25 ), Swap since 25 > 12

<u>Second Pass:</u>

( 18 19 17 12 25 ) –> ( 18 19 17 12 25 )

( 18 19 17 12 25 ) –> ( 18 17 19 12 25 ), Swap since 19 > 17

( 18 17 19 12 25 ) –> ( 18 17 12 19 25 ), Swap since 19 > 12

( 18 17 12 19 25 ) –> ( 18 17 12 19 25 )

<u>Third Pass:</u>

( 18 17 12 19 25 ) –> ( 17 18 12 19 25 ), Swap since 18 > 17

( 17 18 12 19 25 ) –> ( 17 12 18 19 25 ), Swap since 18 > 12

( 17 12 18 19 25 ) –> ( 17 12 18 19 25 )

( 17 12 18 19 25 ) –> ( 17 12 18 19 25 )

<u>Fourth Pass:</u>

( 17 12 18 19 25 ) –> ( 12 17 18 19 25 ), Swap since 17 > 12

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 ), Swap since 18 > 12

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass without any swap to know it is sorted.

<u>Fifth Pass:</u>

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

( 12 17 18 19 25 ) –> ( 12 17 18 19 25 )

6 0
3 years ago
Can i join three 12 volts batteriesto give me 24 volts output​
bulgar [2K]

Answer:

YES

Explanation:

If we connect batteries in series then the output voltage is the sum of the individual voltage of each battery i.e if you connect three 12 volts batteries in series then their output voltage will be 12+12+12=36 volts, but the current rating of the batteries in series will be same of the individual battery rating in 'mah'.

But when we connect the batteries in parallel their voltage is not added  but their current rating in mah is addition of their individual rating.

So, If you want 24 volts from three 12 volts battery then you can connect two of them in series and the other one in parallel with them this will give 24 volts and the current will be addition of the two series batteries and the third which is in parallel with them. You can use this configuration if current value is not a big factor.

8 0
3 years ago
An aircraft is in a steady level turn at a flight speed of 200 ft/s and a turn rate about the local vertical of 5 deg/s. Thrust
notka56 [123]

Answer:

L= 50000 lb

D = 5000 lb

Explanation:

To maintain a level flight the lift must equal the weight in magnitude.

We know the weight is of 50000 lb, so the lift must be the same.

L = W = 50000 lb

The L/D ratio is 10 so

10 = L/D

D = L/10

D = 50000/10 = 5000 lb

To maintain steady speed the thrust must equal the drag, so

T = D = 5000 lb

5 0
3 years ago
Describe, in a general form, the equation, in time domain, that tells the voltage across a inductor, L, as a function of time wh
love history [14]

Answer:

a) V(t) = Ldi(t)/dt

b) If current is constant, V = 0

Explanation:

a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.

If  V represents the Voltage across the inductor

and i(t) represents the current across the inductor in time, t.

V(t) ∝ di(t)/dt

Introducing a proportionality constant,L, which is the inductance of the inductor

The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.

V(t) = Ldi(t)/dt ..................................................(1)

b) If the current flowing through the inductor is constant i.e. does not vary with time

di(t)/dt = 0   and hence the general equation (1) above becomes

V(t) = 0

4 0
3 years ago
Other questions:
  • A mass of 0.3 kg is suspended from a spring of stiffness 0.4 N/mm. The damping is 3.286335345 kg/s. What is the undamped natural
    5·1 answer
  • Please Help It's really Important
    12·1 answer
  • Verify the below velocity distribution describes a fluid in a state of pure rotation. What is the angular Velocity? (a)-Vx = -1/
    7·1 answer
  • Determine F12 and F21 for the following configurations: (a) A long semicircular duct with diameter of 0.1 meters: (b) A hemisphe
    10·1 answer
  • What is not required for current to flow through a conductor
    12·1 answer
  • An uncovered swimming pool loses 1.0 inch of water off its 1,000 ft^2 surface each week due to evaporation. The heat of vaporiza
    14·1 answer
  • Which type of finish is absorbed into the wood?
    7·1 answer
  • A strong base (caustic or alkali) is added to oils to test for: b. entrained air a)- alkalinity b)- acidity c)- contamination. d
    11·1 answer
  • The pressure at the bottom of an 18 ft deep storage tank for gasoline is how much greater than at the top? Express your answer i
    15·1 answer
  • In python, how would I randomize numbers and insert them into a file?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!