Answer:
a = change in v / change in time
= (5.2 - 11) / 3.1
= -1.87 m/s^2
Explanation:
Answer:
Since the maximum thermal efficiency is higher than 55 percent, there can be a power cycle with these reservoir temperature with an efficiency higher than 55 percent.
Explanation:
The maximum thermal efficiency is determined from the given temperature
nth Carnot = 1- TL/TH
Where TL= 17+273= 290k
TH= 627*273= 900K.
nth Carnot = 1- 290/900 = 0.68
0.68*100 = 68 percent
Metallic elements can exist on their own as individual atoms.
Nonmetals usually exist as molecules, combining with atoms of themselves.
Nonmetals can exist on their own as individual atoms.
Explanation:
Metallic elements can exist on their own as individual atoms. They have a large radius and are stable enough to freely exist as single atoms. The metallic bonding in them gives them stability. Example Gold, Silver, Platinum e.t.c
Non-metals are usually found in combined as state as molecules. They are usually joined together by covalent attraction. The bonds are formed with the atoms shares their valence electrons and their octet is completed. For example nitrogen gas, oxygen gas.
Most noble gases are non-metals that exist as individual mono-atomic gases on their own. The gases are stable and have an octet/duet configuration. For example helium gas, neon gas e.t.c
learn more;
Metals and non-metals brainly.com/question/2758034
#learnwithBrainly
The component of the crate's weight that is parallel to the ramp is the only force that acts in the direction of the crate's displacement. This component has a magnitude of
<em>F</em> = <em>mg</em> sin(20.0°) = (15.0 kg) (9.81 m/s^2) sin(20.0°) ≈ 50.3 N
Then the work done by this force on the crate as it slides down the ramp is
<em>W</em> = <em>F d</em> = (50.3 N) (2.0 m) ≈ 101 J
The work-energy theorem says that the total work done on the crate is equal to the change in its kinetic energy. Since it starts at rest, its initial kinetic energy is 0, so
<em>W</em> = <em>K</em> = 1/2 <em>mv</em> ^2
Solve for <em>v</em> :
<em>v</em> = √(2<em>W</em>/<em>m</em>) = √(2 (101 J) / (2.0 m)) ≈ 10.0 m/s