Answer:

Explanation:
Recall the formula for acceleration:
, where
is final velocity,
is initial velocity, and
is elapsed time (change in velocity over this amount of time).
Let's look at our time vs velocity graph. At t=0 seconds, V=25 m/s. So her initial velocity is 25 m/s.
We want to find the acceleration during the first 5 seconds of motion. Well, looking at our graph, at t=5 seconds, isn't our velocity still 25 m/s? Therefore, final velocity is 25 m/s (for this period of 5 seconds).
We are only looking from t=0 seconds to t=5 seconds which is a total period of 5 seconds. Therefore, elapsed time is 5 seconds.
Substituting values in our formula, we have:

Alternative:
Without even worrying about plugging in numbers, let's think about what acceleration actually is! Acceleration is the change in velocity over a certain period of time. If we are not changing our velocity at all, we aren't accelerating! In the graph, we can see that we have a straight line from t=0 seconds to t=5 seconds, the interval we are worried about. This indicates that our velocity is staying the same! At t=0 seconds, we have a velocity of 25 m/s and that velocity stays the same until t=5 seconds. Even though we are moving, we haven't changed velocity, which means our average acceleration is zero!
The car’s velocity as a function of time is b + 2ct and the car’s average velocity during this interval is 0.9 m/s.
<h3>Average velocity of the car</h3>
The average velocity of the car is calculated as follows;
x(t) = a + bt + ct2
v = dx/dt
v(t) = b + 2ct
v(0) = -10.1 m/s + 2(1.1)(0) = -10.1 m/s
v(10) = -10.1 + 2(1.1)(10) = 11.9 m/s
<h3>Average velocity</h3>
V = ¹/₂[v(0) + v(10)]
V = ¹/₂ (-10.1 + 11.9 )
V = 0.9 m/s
Thus, the car’s velocity as a function of time is b + 2ct and the car’s average velocity during this interval is 0.9 m/s.
Learn more about velocity here: brainly.com/question/4931057
#SPJ1
The potential difference across 3 Ohm resistor is 20V.
The resistors are connected in parallel which means all the three resistances have a fully potential difference of 20V.
Question: Predicting the shape of a molecule is relatively straight forward. A molecule's shape will always be determined by the number of electron pairs around the central atom. The number of electron pair corresponds to the number of atoms that are bound to the central atom of the molecule. For example, water contains two hydrogen atom bound to one atom of oxygen, giving the molecule a linear geometry.
Suppose that the model presented by student 1 is correct. Based on the information provided, what would be the bond angle in a molecule of perchlorate ion.
Answer: Suppose that the model presented by student 1 is correct The (perchlorate ion) will be a tetrahedral shape, O-Cl-O bond angle 109.5 due to four groups of bonding electrons and no lone pairs of electrons.
Answer:
true
Explanation:
if you apply force to the top of a square it will not move