The hours taken for concentration to decrease from 0 to 74 min. to 0.21 m is 91.7 hours.
<h3>What is the rate law of a reaction?</h3>
Rate law depicts the rate of a chemical reaction depend on the concentration of the reactant.
The given reaction is second order reaction
Thus, the hours taken for concentration to decrease from 0 to 74 min. to 0.21 m is 91.7 hours.
Learn more about rate law of a reaction
brainly.com/question/8314253
#SPJ4
The balanced chemical reaction would be as follows:
<span>5P4O6 +8I2 ---> 4P2I4 +3P4O10
We are given the amount of reactants used for the reaction. We first need to determine the limiting reactant from the given amounts. We do as follows:
8.80 g P4O6 (1 mol / </span><span>219.88 g) = 0.04 mol P4O6
12.37 g I2 ( 1 mol / </span><span>253.809 g ) = 0.05 mol I2
Therefore, the limiting reactant is iodine since less it is being consumed completely in the reaction. We calculate the amount of P2I4 prepared as follows:
0.05 mol I2 ( 4 mol P2I4 / 8 mol I2 ) (</span><span>569.57 g / 1 mol) = 14.24 g P2I4</span>
You start by diving each quantity given by the atomic wight of each element:
Phosphorus (P) 
Hydrogen (H) 
Then you divide by the lowest number:
for phosphorus
for hydrogen
So the empirical formula will be:

Answer:
A) Age!! Its because even if the object was 1 year old or 100 years old, nothing about the impact would change. However, those other categories depict features that would definitely make an impact. For example as object that is big, fast, and hits at an angle perpendicular to whatever it is moving towards, the impact will be very lage. But if its the opposite and it was small and slow, then the impact crater would not be as large. Good luck on your quiz!!
<span>electron, I believe.
</span>