<span>To find the volume of the plate without accounting for the hole firstly
V = (15.0 cm)(12.5 cm)(0.250 cm) = 46.875 cm^3
and the volume of the hole is
(pi)(1.25 cm)^2(0.250 cm) = 1.2272 cm^3
we will subtract the volume of the hole from the rest 45.648 cm^3
the multiply this by the density of the alloy to find the mass
(8.80 g/cm^3)(45.648 cm^3) = 401.701 g.
0.044% of this is Si, so (0.00044)(401.701 g) = 0.17675 g is silicon.
by the number of atoms and using average atomic mass of silicon and Avogadro's number to find the number of silicon atoms:
(0.17675 g)(1 mol/28.0855 g)(6.022E23 atoms/1 mol) =3.794E21atoms of Si
3.10% of these are Si-30:(0.0310)(3.794E18 atoms)=1.176E20 atoms of Si-30 and with two significant figures, 1.2E20 atoms.
hope this helps
</span>
Answer:
Explanation:
To convert from grams to atoms, first divide by the molar mass, the multiply by 6.022*10^23.
To convert from moles to mass, multiply by the molar mass of the element.
Hope this helps!
-Emma Victoria
hola, esta pregunta es bastante difícil pero está bien, no lo sé, lo siento :) :)
Answer:
Chromuates are found in the chromosomes of the eukaryotic cells!!!!
Explanation:
I learned this in 7th grade!!!!
Mark Me Brainliest plzz
Answer:
Initial concentration of HI is 5 mol/L.
The concentration of HI after
is 0.00345 mol/L.
Explanation:

Rate Law: ![k[HI]^2 ](https://tex.z-dn.net/?f=k%5BHI%5D%5E2%0A)
Rate constant of the reaction = k = 
Order of the reaction = 2
Initial rate of reaction = 
Initial concentration of HI =![[A_o]](https://tex.z-dn.net/?f=%5BA_o%5D)
![1.6\times 10^{-7} mol/L s=(6.4\times 10^{-9} L/mol s)[HI]^2](https://tex.z-dn.net/?f=1.6%5Ctimes%2010%5E%7B-7%7D%20mol%2FL%20s%3D%286.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%29%5BHI%5D%5E2)
![[A_o]=5 mol/L](https://tex.z-dn.net/?f=%5BA_o%5D%3D5%20mol%2FL)
Final concentration of HI after t = [A]
t = 
Integrated rate law for second order kinetics is given by:
![\frac{1}{[A]}=kt+\frac{1}{[A_o]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3Dkt%2B%5Cfrac%7B1%7D%7B%5BA_o%5D%7D)
![\frac{1}{[A]}=6.4\times 10^{-9} L/mol s\times 4.53\times 10^{10} s+\frac{1}{[5 mol/L]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3D6.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%5Ctimes%204.53%5Ctimes%2010%5E%7B10%7D%20s%2B%5Cfrac%7B1%7D%7B%5B5%20mol%2FL%5D%7D)
![[A]=0.00345 mol/L](https://tex.z-dn.net/?f=%5BA%5D%3D0.00345%20mol%2FL)
The concentration of HI after
is 0.00345 mol/L.