Answer:
-125.4
Explanation:
Target equation is 4C(s) + 5H2(g) = C4H10
These are the data equations for enthalpy of combustion
- C(s) + O2(g) =O2(g) -393.5 kJ/mol * 4
- H2(g) + ½O2(g) =H20(l) = 285.8 kJ/mol * 5
- 2CO2(g) + 3H2O(l) = 13/2O2 (g) + C4H10 - 2877.1 reverse
To get target equation multiply data equation 1 by 4; multiply equation 2 by 5; and reverse equation 3, so...
Calculate 4(-393.5) + 5(-285.8) + 2877.6 and you should get the answer.
Answer:
The right option is the 4 one. nucleoid
Prokaryotic cells are simple cells that lack a definite nucleus and some membrane-bound organelles. Prokaryotic cells have a nucleoid region, which is an irregularly-shaped central region of the cell that contains the cell’s genetic information (DNA). Other organelles that can be found in prokaryotic cells include plasma membrane, cell wall, cytoplasm, and ribosomes.
Explanation:
Explanation:
its b cz the gain electrons i think
Answer:
561 g P₂O₃
Explanation:
To find the mass of P₂O₃, you need to (1) convert moles H₃PO₃ to moles P₂O₃ (via mole-to-mole ratio from equation coefficients) and then (2) convert moles P₂O₃ to grams P₂O₃ (via molar mass). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 3 sig figs to match the amount of sig figs in the given value.
Atomic Mass (P): 30.974 g/mol
Atomic Mass (O): 15.998 g/mol
Molar Mass (P₂O₃): 2(30.974 g/mol) + 3(15.998 g/mol)
Molar Mass (P₂O₃): 109.942 g/mol
1 P₂O₃ + 3 H₂O -----> 2 H₃PO₃
10.2 moles H₃PO₃ 1 mole P₂O₃ 109.942 g
---------------------------- x -------------------------- x ------------------- = 561 g P₂O₃
2 moles H₃PO₃ 1 mole