Answer:
ionic solution
Explanation:
when is dissleves its ionic
One thing that does not change is the chemical composition of water, which is still H2O. And maybe mass, if all of the particles remain inside the beaker, which was never mentioned in the question so I am not sure.
Answer:
The transition from lower energy level to higher energy level require a gain of energy.
Explanation:
When transition occur from lower energy level to higher energy level require a gain of energy. Electron could not jump unto higher energy level without gaining thew energy.
When electron jump into lower energy level from high energy level it loses the energy.
For example electron when jumped from 2nd to 3rd shell it gain energy and when in return back to 2nd shell from 3rd shell it loses energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.
A meteorologist predicts fog in the morning over lakes and river bottoms because of the atmospheric conditions and their interactions with the <span>hydrosphere. The hydrosphere is the region on the Earth's surface where the total water on the planet is found. The hydrosphere can be in the form of liquid, vapor, or ice.</span>
pH is the measure of the hydrogen ion concentration while pOH is of hydroxide ion concentration in the solution. The pH is 0.939 and pOH is 13.061 pOH.
pH is the concentration of the hydrogen ion released or gained by the species in the solution that depicts the acidity and basicity of the solution.
pOH is the concentration of the hydroxide ion in the solution and is dependent on the pH as an increase in pH decreases the pOH and vice versa.
Both HCl and HBr are strong acids and gets ionized 100 % in the solution. If we let 1 L of solution for the acids then the concentration of the hydrogen ion will be 0.100 M.
Since both completely dissociate we would just add the molarities of each of the H+ ions together and then calculate the PH and POH from that :
HCL(0.040M)----> H+(0.040M) +CL-(0.040M)
HBr(0.075M)----> H+(0.075M) +Br-(0.075M)
so 0.040M (H+ from HCL) + 0.075M (H+ from HBr) = 0.115M H+ in total.
pH is calculated as:
pH = -log[H+]
Substituting values in the equation:
log(0.115M)= 0.939 pH
pOH is calculated as:
14 - pH = pOH
Substituting values in the equation above:
14 - 0.939= 13.061 pOH
Therefore, pH is 0.939 and pOH is 13.061.
Learn more about pH and pOH here:
brainly.com/question/2947041
#SPJ4